• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sediment-size analysis, nitrate monitoring, bathymetric mapping and construction of a two-dimensional hydrodynamic model of a backwater region of the Upper Mississippi River System 2008-2009

Quarderer, Nathan Anderson 01 January 2010 (has links)
In April 2008, the non-profit organization Living Lands & Waters (LL&W) approached IIHR-Hydroscience and Engineering to assist with the preliminary scoping and assessment for the proposed dredging and restoration of the backwater region located near the confluence of the Iowa and Mississippi Rivers, commonly referred to as Boston Bay. IIHR was responsible for the measurement and analysis of relevant physical and chemical parameters including particle-size analysis of sediment cores; real-time monitoring of nitrate-nitrogen concentration of agricultural runoff entering Boston Bay; bathymetric surveying; as well as the development of a two-dimensional hydrodynamic capable of simulating the proposed dredging activity. Particle-size analysis was achieved using the hydrometer method of sedimentation to determine the distribution of fine particles (silt and clay) while traditional sieving techniques were employed to establish the proportions of sand-sized particles. Results indicate that the sediment contained in Boston Bay consists primarily of particles with diameters in the range of 2-50 µm, what the USDA considers silt, and clay. A real-time nitrate-nitrogen sensor was deployed at the Bay Island Drainage & Levee District pump intake from October 2008, through June 2009. The data collected, coupled with the daily maintenance logs from the pumping station, allow one to estimate that roughly 800 tons of nitrate-nitrogen were pumped into Boston Bay from the drainage district during the time period that the nitrate sensor was deployed in the field. Bathymetric surveying took place in March, 2009. Survey results indicate that the average elevation of Boston Bay is 531.9 feet above sea level (MSL, 1912). Overall, the bay is very flat with little topographic relief except in the areas of Bell's Pocket and the pond where the drainage district pumps discharge. These areas are much deeper than other areas of the bay, with elevations as low as 508 feet above sea level in the deepest regions. A two-dimensional hydrodynamic model of the bay (pre- and post-dredge) was constructed using the US Bureau of Reclamation's SRH-W modeling package. Initial results indicate that dredging Boston Bay does not appear to have detrimental impacts on the existing hydrology of the study area. Model outputs reveal that dredging will create greater availability of deep-water regions, with increased areas of faster moving current. The total area of inundation will also be affected by dredging, perhaps creating ideal habitat for hardwood tree species in portions of the study area that would otherwise be wet under existing conditions. Further studies should be conducted to couple the data obtained during particle-size analysis, with the model results to help estimate the feasibility of the proposed dredging activity and lifetime of the excavated channels.
2

Quantitative analysis in energy loss and vertical mass transport of various channel restoration structures using physical based modeling

Snyder, Katie May 01 August 2016 (has links)
Physical based modeling was conducted to improve channel restoration efforts through direct comparison of submerged structures of various design and orientations. In-stream structure technologies studied are used to provide bank stabilization, flow control, scour and sediment control, as well as ecological enhancement through turbulent dispersion and vertical mass transport. Quantitative analysis evaluates flow effects induced by common channel restoration structures in their ability to provide mixing in our streams and rivers without significant impacts on flooding through excessive energy loss and backwater effect. Physical, fixed-bed flume experiments were performed under high-Reynolds number subcritical steady-state flow conditions. Theoretical energy loss relationships were developed, compared, and evaluated experimentally for stream barbs, spurs, submerged vanes, blocks and boulders. Extensive surface dye-trace experiments were performed to determine centerline mixing and vertical mass transport produced by stream barbs, vanes and boulders. The research presented in this thesis illustrates that the use of dispersion relationships to assess length of vertical mass transport based on the change in energy slope, and estimated shear velocity, of the channel does not properly correct for boundary layer formation and advection or angular motion produced by channel restoration structures. Submerged vanes were found to provide efficient vertical mixing with minimal energy loss or flood risk, as compared to stream barbs, spurs, blocks, and boulders. The deterioration of water quality and the need to provide bank stabilization with limited flood risk require updated NRCS and ASCE design standards and selection tools for vertical mass transport and energy loss relationships of channel restoration structures. The research conducted in these two studies have provided data for a select number of such structures.
3

Flow resistance and associated backwater effect due to spur dikes in open channels

Azinfar, Hossein 01 March 2010
A spur dike is a hydraulic structure built on the bank of a river at some angle to the main flow direction. A series of spur dikes in a row may also be placed on one side or both sides of a river to form a spur dike field. Spur dikes are used for two main purposes, namely river training and bank protection. For river training, spur dikes may be used to provide a desirable path for navigation purposes or to direct the flow to a desirable point such as a water intake. For bank protection, spur dikes may be used to deflect flow away from a riverbank and thus protect it from erosion. It has also been observed that spur dikes provide a desirable environment for aquatic habitat. Despite the fact that spur dikes are useful hydraulic structures, they have been found to increase the flow resistance in rivers and hence increase the flow stage. The present study focuses on the quantification of the flow resistance and associated flow stage increase due to a single spur dike and also that of a spur dike field. Increased flow stage is referred to herein as a backwater effect.<p> In the first stage of the study, the flow resistance due to a single spur dike, expressed as a drag force exerted on the flow in an open channel, was studied and quantified. The work was carried out in a rigid bed flume, with the model spur dike being simulated using various sizes of a two-dimensional (2-D) rectangular plate. Several discharge conditions were studied. The drag force exerted by the spur dike for both submerged and unsubmerged flow conditions was determined directly from measurements made using a specially designed apparatus and also by application of the momentum equation to a control volume that included the spur dike. It was found that the unit drag force (i.e., drag force per unit area of dike) of an unsubmerged spur dike increases more rapidly with an increase in the discharge when compared with that of a submerged spur dike. The results also showed that an increase in the blockage of the open channel cross-section due to the spur dike is the main parameter responsible for an increase in the spur dike drag coefficient, hence the associated flow resistance and backwater effect. Based on these findings, relationships were developed for estimating the backwater effect due to a single spur dike in an open channel.<p> In the second stage of the study, the flow resistance due to a spur dike field expressed as a drag force exerted on the flow was quantified and subsequently related to the backwater effect. The work was carried out in a rigid bed flume, with the model spur dikes simulated using 2-D, rectangular plates placed along one side of the flume. For various discharges, the drag force of each individual spur dike in the spur dike field was measured directly using a specially-designed apparatus. For these tests, both submerged and unsubmerged conditions were evaluated along with various numbers of spur dikes and various relative spacings between the spur dikes throughout the field. It was concluded that the configuration of a spur dike field in terms of the number of spur dikes and relative spacing between the spur dikes has a substantial impact on the drag force and hence the flow resistance and backwater effect of a spur dike field. The most upstream spur dike had the highest drag force amongst the spur dikes in the field, and it acted as a shield to decrease the drag force exerted by the downstream spur dikes. From the experiments on the submerged spur dikes, it was observed that the jet flow over the spur dikes has an important effect on the flow structure and hence the flow resistance.<p> In the third stage of the study, the flow field within the vicinity of a single submerged spur dike was modeled using the three-dimensional (3-D) computational fluid dynamic (CFD) software FLUENT. Application of the software required solution of the 3-D Reynolds-averaged Navier-Stokes equations wherein the Reynolds stresses were resolved using the RNG ê-å turbulence model. One discharge condition was evaluated in a smooth, rectangular channel for two conditions, including uniform flow conditions without the spur dike in place and one with the spur dike in place. The CFD model was evaluated based on some experimental data acquired from the physical model. It was found that the CFD model could satisfactorily predict the flow resistance and water surface profile adjacent to the spur dike, including the resulting backwater effect. Furthermore, the CFD model gave a good prediction of the velocity field except for the area behind the spur dike where the effects of diving jet flow over the spur dike was not properly modeled.
4

Flow resistance and associated backwater effect due to spur dikes in open channels

Azinfar, Hossein 01 March 2010 (has links)
A spur dike is a hydraulic structure built on the bank of a river at some angle to the main flow direction. A series of spur dikes in a row may also be placed on one side or both sides of a river to form a spur dike field. Spur dikes are used for two main purposes, namely river training and bank protection. For river training, spur dikes may be used to provide a desirable path for navigation purposes or to direct the flow to a desirable point such as a water intake. For bank protection, spur dikes may be used to deflect flow away from a riverbank and thus protect it from erosion. It has also been observed that spur dikes provide a desirable environment for aquatic habitat. Despite the fact that spur dikes are useful hydraulic structures, they have been found to increase the flow resistance in rivers and hence increase the flow stage. The present study focuses on the quantification of the flow resistance and associated flow stage increase due to a single spur dike and also that of a spur dike field. Increased flow stage is referred to herein as a backwater effect.<p> In the first stage of the study, the flow resistance due to a single spur dike, expressed as a drag force exerted on the flow in an open channel, was studied and quantified. The work was carried out in a rigid bed flume, with the model spur dike being simulated using various sizes of a two-dimensional (2-D) rectangular plate. Several discharge conditions were studied. The drag force exerted by the spur dike for both submerged and unsubmerged flow conditions was determined directly from measurements made using a specially designed apparatus and also by application of the momentum equation to a control volume that included the spur dike. It was found that the unit drag force (i.e., drag force per unit area of dike) of an unsubmerged spur dike increases more rapidly with an increase in the discharge when compared with that of a submerged spur dike. The results also showed that an increase in the blockage of the open channel cross-section due to the spur dike is the main parameter responsible for an increase in the spur dike drag coefficient, hence the associated flow resistance and backwater effect. Based on these findings, relationships were developed for estimating the backwater effect due to a single spur dike in an open channel.<p> In the second stage of the study, the flow resistance due to a spur dike field expressed as a drag force exerted on the flow was quantified and subsequently related to the backwater effect. The work was carried out in a rigid bed flume, with the model spur dikes simulated using 2-D, rectangular plates placed along one side of the flume. For various discharges, the drag force of each individual spur dike in the spur dike field was measured directly using a specially-designed apparatus. For these tests, both submerged and unsubmerged conditions were evaluated along with various numbers of spur dikes and various relative spacings between the spur dikes throughout the field. It was concluded that the configuration of a spur dike field in terms of the number of spur dikes and relative spacing between the spur dikes has a substantial impact on the drag force and hence the flow resistance and backwater effect of a spur dike field. The most upstream spur dike had the highest drag force amongst the spur dikes in the field, and it acted as a shield to decrease the drag force exerted by the downstream spur dikes. From the experiments on the submerged spur dikes, it was observed that the jet flow over the spur dikes has an important effect on the flow structure and hence the flow resistance.<p> In the third stage of the study, the flow field within the vicinity of a single submerged spur dike was modeled using the three-dimensional (3-D) computational fluid dynamic (CFD) software FLUENT. Application of the software required solution of the 3-D Reynolds-averaged Navier-Stokes equations wherein the Reynolds stresses were resolved using the RNG ê-å turbulence model. One discharge condition was evaluated in a smooth, rectangular channel for two conditions, including uniform flow conditions without the spur dike in place and one with the spur dike in place. The CFD model was evaluated based on some experimental data acquired from the physical model. It was found that the CFD model could satisfactorily predict the flow resistance and water surface profile adjacent to the spur dike, including the resulting backwater effect. Furthermore, the CFD model gave a good prediction of the velocity field except for the area behind the spur dike where the effects of diving jet flow over the spur dike was not properly modeled.
5

Rating of discharge at monitoring station affected by backwater effects - El Deim station in the Blue Nile

Hansson, Mattis January 2013 (has links)
On the Blue Nile in Sudan, near the Ethiopian border, there is a measurement station named El Deim. The discharge assessments carried out at this station are crucial for the water resource management in Sudan. Due to changed conditions, caused by a heightening of the downstream-located Roseires dam, new methods for discharge assessment are needed. The objective of the present study was to examine possibilities and methodologies to assess the discharge at this station. The flow dynamics was examined through steady state as well as dynamic hydraulic modeling by use of the Mike 11 modeling software package. By simulating possible future scenarios, in the aspect of discharge variations in the Blue Nile and water level variations in the reservoir, the effects from the raised dam on El Deim could be studied. The model was based on bathymetrical data in form of cross sections. As boundary conditions for the simulation, measured and synthetic data series of discharge and water levels were used. The known measured water levels at El Deim were compared with the simulated water levels at El Deim for the same discharge scenarios. The modeled value corresponds well to the measured values. The existing discrepancies between the simulated and measured values are likely caused by insufficient bathymetrical data.   Simulation results show that the flow dynamics at El Deim are highly dependent on the water level of the reservoir and the discharge’s rate of variation. Accordingly, rating curves were created for a range of water levels at the reservoir. With the use of these curves, and tables/equations based on them, the discharge can be rated by knowing the water level at the Roseires dam and El Deim. However, the results from this study are more a description of the principles of how the discharge ratings could be performed. If the methodology and rating tools from this study are planned to be implemented the model must be improved with more bathymetrical data. The improvements are needed to create more accurate curves, tables and equations for discharge rating. Discharge ratings can then be produced and enable better operation of Roseires dam and a more efficient use of the valuable water resources in Sudan. In order to test the applicability of the created model and produced rating tools they should be compared with new measurement data from El Deim with the heightened Roseires dam fully implemented.   It is possible to assess the discharge at El Deim even when backwater effects affect the station. The methodology developed in this thesis would be applicable for similar studies at other locations.
6

Steady State Hydroplaning Risk Analysis and Evaluation of Unsteady State Effects

Yassin, Menna 17 June 2019 (has links)
Hydroplaning is a major concern on high speed roadways during heavy rainfall events. Hydroplaning tools are widely used by designers to reduce their roadway’s hydroplaning potential, therefore reducing the possibilities of severe crashes. This dissertation presents two methodologies for improving the prediction of hydroplaning potential. The first phase focused on improving an existing widely used software called PAVDRN. Using multiple datasets from the Florida Department of Transportation, the author filtered the data using specific criteria to leave only truly dynamic hydroplaning crashes. The author then evaluated PAVDRN’s prediction capabilities and assessed its reliability in predicting a hydroplaning crash. Using past accident statistics, the author accounted for extraneous factors that are difficult to capture, such as driver behavior, and obtained probability factors for a more realistic estimate of hydroplaning risk on roadways. The second phase focused on improving the modeling technique used in hydroplaning prediction tools. Currently when assessing a roadway’s hydroplaning potential, the roadside drainage is not considered in the analysis. The author modeled a combined pavement-drainage system using a 1D/2D method to better capture the effects of roadside drainage, especially in the events of flooding. The methodology used in modeling successfully captures the backwater effects that are caused under critical flooding conditions. Lastly the author created a new tool (MY-PAVDTCH) to provide design engineers with updated waterfilm thickness values under roadside drainage flooded conditions.
7

Study on the Dynamic Control of Dam Operating Water Levels of Yayangshan Dam in Flood Season

Bramsäter, Jenny, Lundgren, Kajsa January 2015 (has links)
Water levels up- and downstream of dams are strongly affected by water levels in the reservoir as well as the discharge of the dam. To ensure that no harm comes to buildings, bridges or agricultural land it is important to ensure that the water level in the reservoir is adjusted to handle large floods. This report studies within what range the water level in the reservoir of the Yayangshan dam, located in Lixian River, can vary without causing any flooding downstream the dam or at the Old and New Babian Bridge located upstream the dam. By calculation of the designed flood, flood routing- and backwater computation, initial water level ranges in the reservoir have been set for the pre-flood, main flood and latter flood season for damages to be avoided. Due to the far distance between the dam site and the bridges, backwater effects had no influence on the limitations of the initial water level in the reservoir.
8

STRATIGRAPHY, PROVENANCE, TIMING AND CONTROL OF INCISED VALLEYS IN THE FERRON SANDSTONE / INCISED VALLEYS IN THE FERRON SANDSTONE

Kynaston, David A. January 2019 (has links)
This thesis evaluates the nature, provenance, geometry and morphology of incised valley fills to test assumptions made by valley models using ancient examples from well exposed outcrops, in the late Turonian Ferron Sandstone Member of the Mancos Shale Formation in southeastern Utah. The relevance of this work will have particular significance to long wavelength cycles of fluvial landscapes and valley morphology, non-marine reservoir characterization and significant implications for non-marine response to high frequency allogenic cycles such as climate change and changes in relative sea-level. This study illustrates the stratigraphic complexity of valley fill deposits at three levels of spatial resolution. At channel scale within the lower backwater, facies architecture and paleohydraulic analysis are used to predict the degree of shale drape coverage of point bars in a tidally-influenced incised channel. At channel belt scale the study documents a tidally incised, mudstone prone trunk-tributary valley fill and overlying highstand fluvial succession within a stratigraphic framework of fluvial aggragation cycles. 3D photogrammetry models and a high resolution GPS survey are used to restore the morphology of a trunk-tributary valley floor, revealing a surface of tidal ravinement and tidal drainage morphology. At a regional scale, this study radically revises the paleogeographic mapping of the Ferron trunk system, spanning over 1,600 km2. Provenance analysis reveals Ferron Notom trunk valleys were filled at times by sediment from the Mogollon Highlands of Arizona to the southwest, and alternately by sediment from the Sevier Thrust Front to the northwest. Evidence shows the Ferron trunk rivers, previously hypothesized to be an avulsive axial drainage, to be more analogous to Quaternary examples. / Thesis / Doctor of Philosophy (PhD)
9

Aquatic vegetation processes in a floodplain-river system and the influence of lateral dynamics and connectivity

Keruzoré, Antoine January 2012 (has links)
In river ecology the description and understanding of near-natural ecosystem functionality is a difficult task to achieve as the majority of river floodplains have been intensively impacted by human activities. This work addresses ecological functionality of a relatively unimpacted large river system, focussing on the lateral dynamic and connectivity mechanisms driving aquatic vegetation processes. Macrophytes were found to be very patchily distributed at the riverscape scale, being mainly confined to low energy lateral habitats in the floodplain, such as backwaters. Backwaters provided favourable conditions for plants to colonise and recruit and contributed highly to species diversity and productivity at the floodplain scale. Differences between backwaters were attributed to the frequency of connectivity with the main channel during flood events. Nevertheless, the ecological mechanism driving diversity through flooding appears not to be related to flow disturbance. Biomass produced in backwaters was found to remain stable after potentially scouring floods. Therefore the hypothesis that flood disturbances promote species diversity through the removal and destruction of biomass and rejuvenate communities such that species coexistence is increased was rejected. Rather, it appears that diversity in backwaters increases along a temporal gradient as a response to the input of colonists and their accumulation overtime through successive flood inputs. Despite the apparently non-destructive effect of floods on macrophyte biomass, backwaters appear to have a significant role in exporting large amounts of plant propagules from the site of production. Backwaters represented a net source of propagules which highly enriched the main channel pool of potential colonists. However, whereas propagules could be dispersed for long distances in flood flows the probability for them to reach a suitable downstream habitat was extremely low. This work showed that dispersal at baseflow and entry to backwaters through the downstream end after short dispersal drift provided a greater chance of successful colonisation despite the individually much shorter distance moved. Backwaters were demonstrated to be rather isolated aquatic habitats, even though they experience hydrological connectivity, suggesting that primary colonisation of these sites is a limiting step. Instead, colonisation was shown to rely primarily on propagules generated internally by established plants. Whereas colonisation could occur via internal re-organisation of existing plant propagules, the backwater seed bank could also contribute to the macrophytes species established in backwaters. Such contribution was consistently low to medium along a gradient of disturbances and connectivity and showed independence from such river flow processes. Species richness was found to be higher in the established species than in the seed bank, suggesting that asexual reproduction is prioritised by aquatic vegetation in riverine backwaters. The occurrence or persistence of macrophyte species in backwaters depends upon rhizome and plant shoot regeneration. The lack of influence of connectivity revealed that plants may originate from both in situ and externally waterborne vegetative propagules derived from other upstream backwaters. This research demonstrated that the lateral dynamic and associated connectivity are major components of river floodplain ecology which generate a wide spectrum of habitats and have a controlling effect on vegetation processes. Therefore a naturally dynamic ecological state is required to support ecosystem functionality in large river floodplains and especially to maintain a high level of species diversity, productivity and colonisation of backwaters by macrophytes.
10

HIGH RESOLUTION SENSING OF NITRATE DYNAMICS IN A MIXED-USE APPALACHIAN WATERSHED: QUANTIFYING NITRATE FATE AND TRANSPORT AS INFLUENCED BY A BACKWATER RIPARIAN WETLAND

Jensen, Alexandria Kosoma 01 January 2018 (has links)
As harmful algal blooms begin to appear in unexpected places such as rivers in predominantly forested systems, a better understanding of the nutrient processes within these contributing watersheds is necessary. However, these systems remain understudied. Utilization of high-resolution water quality data applied to deterministic numerical modeling has shown that a 0.42% watershed area backwater riparian wetland along the Ohio River floodplain can attenuate 18.1% of nitrate discharged from local mixed-use watersheds and improves in performance during high loading times due to coinciding increased hydrological connectivity and residence times of water in these wetlands. Loading from the Fourpole Creek watershed was typical for mixed-use systems at 3.3 kgN/ha/yr. The high-resolution data were used to improve boundary condition parameterization, elucidate shortcomings in the model structure, and reduce posterior solution uncertainty. Using high resolution data to explicitly inform the modeling process is infrequently applied in the literature. Use of these data significantly improves the modeling process, parameterization, and reduces uncertainty in a way that would not have been possible with a traditional grab sampling approach.

Page generated in 0.0657 seconds