• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 29
  • 10
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 21
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Section shape effects and surface disturbances in lock-exchange flow

Mohammad, L. A. January 1986 (has links)
No description available.
2

The stochastic treatment of solute movement through a structured clay soil

Dyson, J. S. January 1987 (has links)
No description available.
3

Hot-film anemometry in dispersed oil-water flows : Development of a hot-film anemometer based measurement technique for detailed studies of complex two-phase flows and its application.........bubbly water-kerosene and water-air flows

Farrar, B. January 1988 (has links)
No description available.
4

A study of the flow of air and water in vertical tubes

Chaudhry, Allah Bakhsh January 1967 (has links)
No description available.
5

Three phase gas-oil-water pipe flow

Valle, Arne January 2000 (has links)
No description available.
6

Particle tracking in separated flows

Siu, Yam Wing January 1996 (has links)
No description available.
7

Neodymium and lead isotope time series from Atlantic ferromanganese crusts

Reynolds, Ben Christopher January 2000 (has links)
No description available.
8

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure

Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani 2011 August 1900 (has links)
Flow kinematics of green water due to plunging breaking waves interacting with a simplified, three-dimensional model structure was investigated in laboratory. Two breaking wave conditions were tested: one with waves impinging and breaking on the vertical wall of the model at the still water level and the other with waves impinging and breaking on the horizontal deck surface. The incoming wave parameters were selected similar to observed wave parameters for the maximum wave height for Hurricane Ivan based on Froude scaling. The Bubble Image Velocimetry (BIV) technique was used to measure the flow velocity. Measurements were taken on a vertical plane located at the center of the deck surface and a horizontal plane located slightly above the deck surface. The evolution of green water flow kinematics in time and space is revealed in the study. The unsteady and non-uniform velocities were found to be quite different between the two wave conditions, even though the incoming waves are nearly identical. It was observed that the maximum velocity appears near the green water wave front and is 1.44C with C being the wave phase speed for the deck impingement case and 1.24C for wall impingement case. The velocity variations in the present study were compared with that in an earlier study using a two-dimensional model with the same wave condition as in the wall impingement condition. It was found that the magnitudes of the maximum vertical velocity is very different between these two models (1.7C in the 3D model versus 2.9C in the 2D model), whereas the magnitudes of the maximum horizontal velocity on the deck are very similar (1.2C in both 3D and 2D models). The applicability of dam-break theory on green water velocity prediction for the three-dimensional model was also investigated. It was found that the dam-break theory works very well in terms of predicting the maximum velocity, which is also the front velocity, but not the spatial distribution of the velocity on the deck. Furthermore, pressure measurements were performed at two vertical planes: one at the centre and the other at 0.05 m away from the centre. Ensemble averaged pressure variations were compared. Two types of pressure variations, impulsive type and non-impulsive type were observed. Impact pressure was successfully related to the pressure rising time. Void fraction was measured for few locations near the model front edge. Predictions of maximum impact pressure based on the measured pressure and flow velocity were investigated linking pressure with kinetic energy. Constant impact coefficient of 1.3 was found for wall impingement wave. However, for deck impingement wave, it was not possible to find a constant impact coefficient. It was also found that there is a linear relationship between the rising pressure gradient and the impact coefficient.
9

Measuring Water Flow and Rate on the Farm

Martin, Edward C. 10 1900 (has links)
Revised; Originally Published: 2009 / 4 pp. / Proper water management involves two basic considerations: when and how much irrigation water to apply. The timing of an irrigation event (the when) involves utilizing information on plant needs and soil water conditions. How much depends primarily on the soil’s water holding capacity, the depletion level and the rooting depth of the crop. Once you have calculated how much water to apply, how can you be sure that you have accurately applied that amount? Or, if you miss your target amount, how do you determine how much water you actually applied? The amount of water applied to a field is a function of time, flow and area. The time of an irrigation is easily recorded. The amount of area irrigated is also easily calculated. However, estimating flow rate in an open ditch is often guess work, at best. In this bulletin we shall discuss ways to measure water flow in an open ditch.
10

Simulation of fluid flow in fractured rock : a probabilistic approach

Samaniego, Jose Antonio January 1985 (has links)
No description available.

Page generated in 0.0743 seconds