• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 720
  • 381
  • 115
  • 95
  • 76
  • 31
  • 29
  • 27
  • 26
  • 13
  • 12
  • 9
  • 7
  • 7
  • 6
  • Tagged with
  • 1958
  • 562
  • 396
  • 300
  • 268
  • 216
  • 196
  • 182
  • 176
  • 173
  • 157
  • 142
  • 134
  • 124
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Pedestrian-Induced Bridge Response: Using a modal response model to predict the vibrations of a bridge when subjected to periodic pedestrian loads

Rogers, Samuel 03 May 2010 (has links)
The availability and use of new materials and construction techniques are allowing bridges to be built that are longer and more slender to those that have been constructed in the past. This can cause bridges to have lower stiffness and damping, and thus be less able to resist dynamic effects. This is of special concern for pedestrian bridges, because the harmonic loads that pedestrians apply to the bridge have the potential to excite the bridge’s natural frequencies. In addition, pedestrians can be sensitive to these vibrations. A model was developed in order to better understand the effects that a pedestrian can have on these vibration-prone bridges. The model consisted of two parts: a finite element model that used the structural data for the bridge in order to produce mass-normalized mode shapes, and a bridge-pedestrian interaction program that used the structural and modal data, along with pedestrian loading scenarios, to generate the bridge response. A parametric study of two bridges was conducted. The bridges included: a short span bridge that would not be expected to respond excessively to pedestrian loads, and a long-span, lively bridge that had natural frequencies in the range of pedestrian loading. Many loading cases were examined by varying the following parameters: load case, number of pedestrians, damping, and pacing frequency. The modal solution was an effective method of finding the bridge responses. It was determined that pedestrian loads can be represented by a simple constant plus sinusoidal load. The excessive vibrations of long and slender bridges could be addressed by increasing damping on susceptible modes. / Thesis (Master, Civil Engineering) -- Queen's University, 2010-05-03 12:36:05.561
352

Life cycle evaluation of fatigue mitigation for orthotropic steel bridge decks

Sugioka, Koichi January 2009 (has links)
Bridges with orthotropic steel decks have been built across the world over the past 60 years because they provide high strength and stiffness at a relatively low cost. However, a number of these bridges have sustained fatigue fractures. The investigation described in this thesis was carried out in order to identify cost-effective fatigue crack mitigation techniques by using the deck surfacing to reduce the stresses in the steel deck. Epoxy asphalt with an expanded metal mesh was investigated with small- and large-scale laboratory tests. Finite element analyses were also performed. The small scale tests conducted at different temperatures and loading frequencies showed that asphalt stiffness increased with decreasing temperature and faster loading. The expanded metal mesh in the epoxy asphalt layer noticeably increased asphalt stiffness. In the large scale tests and finite element analyses, critical loading positions to cause stress concentrations at the fatigue prone rib-to-deck welded connections were determined with different tyre configurations. The stress reduction due to the deck surfacing was estimated for the critical loading positions. The full scale test specimen was subjected to actual truck tyres. With the effectiveness of mitigation techniques for fatigue cracks on orthotropic steel bridge decks known, a probability-based fatigue lifetime evaluation methodology using Monte Carlo simulation was developed. The deck surfacing effects with seasonal and hourly temperature variations were considered. The fatigue lifetime extension using the epoxy asphalt was quantified. For a particular bridge, cost-effective maintenance scenarios were investigated. A simple calculation method for fatigue lifetime was introduced for engineers or bridge owners to assist understanding of decision support tool concepts.
353

MODELING MOVEMENT BEHAVIOR AND ROAD CROSSING IN THE BLACK BEAR OF SOUTH CENTRAL FLORIDA

Guthrie, Joseph Maddox 01 January 2012 (has links)
We evaluated the influence of a landscape dominated by agriculture and an extensive road network on fine-scale movements of black bears (Ursus americanus) in south-central Florida. The objectives of this study were to (1) define landscape functionality including corridor use by the directionality and speed of bear movements, (2) to develop a model reflecting selected habitat characteristics during movements, (3) to identify habitat characteristics selected by bears at road-crossing locations, and (3) to develop and evaluate a predictive model for road-crossing locations based on habitat characteristics. We assessed models using GPS data from 20 adult black bears (9 F, 11 M), including 382 unique road-crossing events by 16 individuals. Directionality of bear movements were influenced by the density of cover and proximity to human infrastructure, and movement speed was influenced by density of cover and proximity to paved roads. We used the Brownian bridge movement model to assess road-crossing behavior. Landscape-level factors like density of cover and density of roads appeared more influential than roadside factors, vegetative or otherwise. Model validation procedures suggested strong predictive ability for the selected road-crossing model. These findings will allow managers to prioritize and implement sound strategies to promote connectivity and reduce road collisions.
354

Aspects of sway frame design and ductility of composite end plate connections

Brown, Nigel David January 1995 (has links)
This thesis reports work on two aspects of framed structures: part I is concerned with sway frames and part II with the ductility of composite flush end plate connections. Part I has investigated the effect of adopting standardised end plate connections as the method of providing the load path between the structural members of a steelwork sway frame. Practical low to medium rise multi-storey frame geometries have been designed in accordance with limit state principles in conjunction with the Wind-Moment Method. Each frame was analysed by undertaking a second-order elastic-plastic computer analysis to ascertain their structural performance, with particular emphasis directed towards problems associated with stability and sway deflections. The computer simulation necessitated the formulation of a prediction equation that modeled the initial stiffness characteristics of the standard connections. This model has been verified by comparison with full scale experimental test results, mainly taken from the literature. The investigation confirms that standardised end plate connections provide levels of stiffness and resistance which enable unbraced steel frames to be safely designed by the Wind-Moment method. There are however certain frame geometries where serviceability considerations dictate that stiffening to the frame would be necessary, if the standardised end plate connections were used. Part II has investigated the ductility of five major axis composite flush end plate connections that incorporate nominally identical amounts of reinforcement in conjunction with either 457 or 533 serial size Universal Beams. Other variable parameters include end plate thickness and horizontal spacing of the rebars. The work was undertaken experimentally and the results analysed in the context of connection performance. The results have shown that it will not prove difficult to ensure virtually rigid behaviour of the overall composite connection, despite the use of relatively thin end plates. Moreover, the experiments also show that the rotation capacity of composite connections in which 1% reinforcement is provided, would be sufficient to allow plastic methods of design to be used for composite beams with 457 serial size designations; however, ductility remains a problem when the depth of beam is further increased. To this end, an empirical model for assessment of ductility has been proposed, based on the observed deformation characteristics of the joint as a whole. This enables the total rotation capacity of one type of a composite connection to be determined when the failure occurs by fracture of the reinforcing bars.
355

Bridges of Markov counting processes : reciprocal classes and duality formulas

Conforti, Giovanni, Léonard, Christian, Murr, Rüdiger, Roelly, Sylvie January 2014 (has links)
Processes having the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.
356

Reciprocal class of random walks on an Abelian group

Conforti, Giovanni, Roelly, Sylvie January 2015 (has links)
Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of a continuous time random walk with values in a countable Abelian group, we compute explicitly its reciprocal characteristics and we present an integral characterization of it. Our main tool is a new iterated version of the celebrated Mecke's formula from the point process theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss several examples to illustrate the richness of reciprocal classes. We observe how their structure depends on the algebraic properties of the underlying group.
357

The application of parallel computer technology to the dynamic analysis of suspension bridges

Beith, Jason Gordon January 1997 (has links)
This research is concerned with the application of distributed computer technology to the solution of non-linear structural dynamic problems, in particular the onset of aerodynamic instabilities in long span suspension bridge structures, such as flutter which is a catastrophic aeroelastic phenomena. The thesis is set out in two distinct parts:- Part I, presents the theoretical background of the main forms of aerodynamic instabilities, presenting in detail the main solution techniques used to solve the flutter problem. The previously written analysis package ANSUSP is presented which has been specifically developed to predict numerically the onset of flutter instability. The various solution techniques which were employed to predict the onset of flutter for the Severn Bridge are discussed. All the results presented in Part I were obtained using a 486DX2 66MHz serial personal computer. Part II, examines the main solution techniques in detail and goes on to apply them to a large distributed supercomputer, which allows the solution of the problem to be achieved considerably faster than is possible using the serial computer system. The solutions presented in Part II are represented as Performance Indices (PI) which quote the ratio of time to performing a specific calculation using a serial algorithm compared to a parallel algorithm running on the same computer system.
358

Adhesive Bonding of Concrete-steel Composite Bridges by Polyurethane Elastomer

Cheung, Billy Siu Fung 30 July 2008 (has links)
This thesis is motivated by the use of full-depth, precast, prestressed concrete panels to facilitate deck replacement of composite bridges. The shear pockets required in using convention shear stud connections, however, can cause durability problems. The objective of this study is to investigate the possibility of eliminating the use of shear studs, and adhesively bond the concrete and steel sections. The feasibility of the developed polyurethane adhesive joint is defined based on the serviceability and ultimate limit states. The joint must have sufficient stiffness that additional deflection due to slip must not be excessive. The adhesive and bond must also have sufficient strength to allow the development of the full plastic capacity of the composite section. The use of the developed adhesive joint in typical composite bridges was found to be feasible. The behaviour under live load was found to be close to a fully composite section.
359

Adhesive Bonding of Concrete-steel Composite Bridges by Polyurethane Elastomer

Cheung, Billy Siu Fung 30 July 2008 (has links)
This thesis is motivated by the use of full-depth, precast, prestressed concrete panels to facilitate deck replacement of composite bridges. The shear pockets required in using convention shear stud connections, however, can cause durability problems. The objective of this study is to investigate the possibility of eliminating the use of shear studs, and adhesively bond the concrete and steel sections. The feasibility of the developed polyurethane adhesive joint is defined based on the serviceability and ultimate limit states. The joint must have sufficient stiffness that additional deflection due to slip must not be excessive. The adhesive and bond must also have sufficient strength to allow the development of the full plastic capacity of the composite section. The use of the developed adhesive joint in typical composite bridges was found to be feasible. The behaviour under live load was found to be close to a fully composite section.
360

LRFD Calibration of Bridge Foundations Subjected to Scour and Risk Analysis

Yao, Congpu 03 October 2013 (has links)
Bridge scour is the loss of soil by erosion due to water flowing around bridge supports. Scour has been the number one cause of bridge collapse in the United States with an average rate of 22 bridges collapsing each year. This dissertation addresses three topics related to bridge scour. First, three sets of databases are used to quantify the statistical parameters associated with the scatter between the predicted and measured scour depth as well as the probability that a deterministically predicted scour depth will be exceeded. The analysis results from these databases will also be used to provide the bias factors in the scour depth predictions in practice. In the second part of the dissertation, these statistical parameters are used to develop a reliability-based Load and Resistance Factor Design (LRFD) for shallow and deep foundations subjected to scour. The goal is to provide a design procedure for the bridge foundations, where the reliability of the foundation is the same with or without scour. For shallow foundations, the key of the design issue is the location of the foundation depth and the probability that the scour depth will exceed the foundation depth. Therefore, for shallow foundations, the proposed LRFD calibration is based on the probability of exceedance of the predicted scour depth. However for deep foundations, the key of the design issue is the resistance factor associated with the axial capacity of a pile. Hence, the proposed LRFD calibration for deep foundations is based on a reliability analysis using First-Order Reliability Method (FORM). The dissertation is broadened in the third part by analyzing he risk associated with bridge scour, where the risk is defined as the probability of failure times the value of the consequences. In the third part, the risk associated with bridge scour is compared to risks associated with other engineering structures as well. Target values of acceptable risk are recommended as part of the conclusions. The outcome of the research will modify the current “AASHTO LRFD Bridge Design Specifications” developed by the American Association of State Highway and Transportation Officials (AASHTO) and help the practitioners design foundations of bridges over rivers for a uniform probability of failure in the case of scour. The risk of bridge scour is also quantified in the dissertation, and compared with common societal risks and civil engineering risks. It will help engineers understand the risk level associated with bridge scour.

Page generated in 0.0645 seconds