• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Predikce teplotní závislosti lomové houževnatosti / Prediction of the fracture toughness temperature dependence

Václavík, Martin January 2015 (has links)
The thesis is focused on the prediction of the fracture toughness temperature dependence through a universal curve of fracture toughness (also known as the master curve). To determine the parameters of the universal curve of fracture toughness, values acquired from the measurement results of fracture toughness and tensile tests of structural steel P91 are used. The theoretical part is based on a summary of the relevant information from the field of fracture mechanics and brittle-ductile fracture behavior of steels that are important for the understanding of fracture-strain response of materials depending on load conditions. The experimental part of the thesis contains the results from practical measurements and analyses, which were used for determining the parameters of a universal curve of fracture toughness as well as for the evaluation of fracture behavior and description of the impact of structural parameters on this behavior in case of steel P91.
32

Bestimmung von Materialparametern der elastisch-plastischen Verformung und des spröden Versagens aus Small-Punch-Kleinstproben

Rasche, Stefan 29 April 2013 (has links)
Der Small-Punch-Test (SPT) ist eine vielversprechende minimalinvasive mechanische Prüfmethode, wenn nur sehr wenig Material für Proben zur Verfügung steht. Die vorliegende Arbeit hat das Ziel, aus Small-Punch-Kleinstproben wahre Materialparameter der elastisch-plastischen Verformung und des spröden Versagens zu bestimmen. Die Kraft-Verschiebungs-Kurve des Versuchs stellt die nichtlineare Materialantwort der inhomogen beanspruchten Probe dar. Das inverse Problem der Identifikation konstitutiver Materialparameter wird numerisch mit Hilfe von Finite-Elemente-Simulationen in Verbindung mit einem Response-Surface-Modell und nichtlinearer Optimierungsverfahren gelöst, indem die Abweichung zwischen gemessener und simulierter Kurve minimiert wird. Mit Hilfe einer eigens entwickelten Kühlapparatur wurden Versuche mit ferritischen Stählen von Raumtemperatur bis hinunter zu -191°C durchgeführt und die temperaturabhängigen Fließkurven identifiziert. Bei tiefen Temperaturen wurden die Weibull-Parameter der zufällig streuenden Sprödbruchfestigkeit bestimmt und die Bruchzähigkeitsverteilung durch Simulation einer CT-Probe vorhergesagt. Für eine Aluminiumoxidkeramik wurden ebenfalls die Weibull-Parameter bestimmt sowie mit Indenterrissen versehene Proben zur Abschätzung der Bruchzähigkeit verwendet. / The small punch test (SPT) is a promising minimally invasive material testing method, especially in cases where only small amounts of material are available. This thesis is aimed at identifying true material parameters of elastic-plastic deformation and brittle fracture. The load-displacement curve of the test represents the non-linear material response of the nonuniformly stressed specimen. The identification of material parameters of constitutive laws is an inverse problem, which is solved numerically. Finite element simulations together with a response surface model and nonlinear optimization techniques are applied to minimize the error between measured and simulated curves. A specially developed cooling apparatus was used to perform tests with ferritic steels from room temperature down to -191°C. The temperature dependent yield stresses and hardening curves were identified. At low temperatures the Weibull parameters of randomly distributed cleavage fracture strength were estimated. The fracture toughness distribution was then predicted by the help of a finite element simulation of a CT specimen. Furthermore the Weibull parameters of an alumina ceramic were determined and its fracture toughness was predicted using specimens prepared with indentation cracks.
33

Napjatostní aspekty kvazikřehkého lomu / Stress state aspects of quasi-brittle fracture

Sobek, Jakub January 2015 (has links)
The presented dissertation thesis is focused, as the title suggests, on the analysis of stress state aspects of quasi-brittle fracture. That means the fracture of composite materials with cement matrix (such as concrete, mortar, plaster, etc.), ceramics and other composites. Used methods are based on the theory of multi-parameter linear elastic fracture mechanics, which highlights the importance of considering of several initial terms of Williams power series, approximating the stress and displacement fields in a cracked body, within conducted fracture analyses. Determination of values of coefficients of terms of this series, recalculated into the shape functions serving in most of the conducted stress state analyses, is performed via the so called over-deterministic method. Another tool for the problem solving is nonlinear fracture mechanics, represented primarily by the cohesive crack model, namely the crack band model implemented in the used ATENA software. For the backward reconstruction of stress field in the cracked bodies the application ReFraPro is used. The analytical part deals with various aspects of wedge-splitting test – from the boundary conditions, though various possibilities of nodal selection (required as input variables for the over-deterministic method) up to the advanced (automated) analysis of numerical model. Special chapter includes atypical test specimens designed for adjusting of various levels of constraint of stress and deformation at the propagating crack tip. The study of this geometry and also the subsequent detail analysis reveals important information for real experiments. Backward reconstruction of stress field presents analysis on suitable possibilities of nodal selections as inputs into the procedure of approximation of the crack tip fields and answers the question of the necessity of application of the multi-parameter linear elastic fracture mechanics for certain fracture analyses of specimens from quasi-brittle materials. The th
34

Ohýbaná tělesa: Numerická podpora v software ANSYS / Bend specimens: Numerical support in software ANSYS

Viszlay, Viliam January 2016 (has links)
The aim of the thesis is the investigation of fracture-mechanics parameters on specimens made of quasi-brittle materials. The principles of two-parameter fracture mechanics are used. Couple of numerical simulations were done and their outputs are used for two main analysed specimen geometries. For simulations the finite element method software ANSYS is used. In the first part, the thesis focuses on bended specimens. The influence of different geometric parameters on fracture mechanics behaviour of cracked specimen is investigated. For model calibration the outputs of other authors are used. In the second part the specimens for modified compact-tension test (CT test) are analysed. Similar to the first part, the influence of geometric parameters of the specimen (in this case, the specimen size) on fracture mechanics parameters were investigated. The modified CT test was derived from CT test which is commonly used for metal materials testing as the suitable geometry for cement-based composite materials testing. The outputs of both parts are calibration polynomials, which are expressions obtained for different specimen geometries, giving the value of fracture mechanics parameter as the function of specimen geometry. As the example, calibration curves are used to obtain fracture toughness of tested material using the outputs from recent experiment.

Page generated in 0.0397 seconds