• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 30
  • 25
  • 25
  • 16
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 306
  • 306
  • 85
  • 83
  • 71
  • 67
  • 50
  • 45
  • 44
  • 39
  • 33
  • 32
  • 32
  • 31
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study on Dynamic Behaviors of the Carbon Fiber Composite Golf Shaft

Huang, Sin-Kai 31 August 2010 (has links)
The purpose of this thesis is to understand dynamic behaviors of carbon fiber composite golf shaft and the influence of different carbon fiber shaft flexes on club heads. To achieve the purpose, the researcher used the finite element method (FEM) software LS-DYNA and ANSYS to analyze the dynamic behaviors of carbon fiber composite golf shaft. He also applied three rigid bodies and two revote joint in a swing mode to simulate swing motion. In the same driving moment, the comparison provides golfer with a reference for selecting suitable carbon fiber composite golf shaft. It also offers other researchers an FEM model to do further analysis of dynamic behaviors of golf heads with the carbon fiber composite shaft.
2

On the Study of Proton Exchange Membrane Fuel Cell¡XA Nonhomogeneous Composite Bipolar Plate of a Fuel Cell

Lin, Ming-Zin 29 August 2003 (has links)
Abstract The objectives of the thesis are to study and research the function of the fuel cell¡¦s bipolar plate which is vital to the Proton Exchange Membrane fuel cell¡Aand to create a new bipolar plate composed of nonhomogeneous plate and conductive object which conductive object are put through light weight plastic plate in consideration of low cost¡Bmini size¡Blight weight and high efficiency¡Atogether with a series of test for its capability. Of the same section area¡Athe electric resistance of carbon fiber used in this experiment is lower than traditional graphite bipolar plate.According to related literature¡Athe resistant of the graphite bipolar plateis lower than the ones made of other materials or composite material.The carbon fiber is a suitable conductive object for bipolar plate consequently. Without leakage¡Athe material are stand the differential pressure up to 0.5 kg/cm2 through the leakage/pressure tests.It is good enough in most of practical application.The strength of bipolar plate to resist the differential pressure is related to the plate strength and the strength of bond¡Ainterface between bond and plate or bond and carbon fiber.The proper bond is very important in this case. The efficiency of fuel cell decreases rapidly in line with the increase of loading during the efficiency test of fuel cell and sudden drop portion situates at Ohm resistance domain.Other papers describe about the main factor of Ohm resistance domain is resistance loss¡Aparameter include conductive coefficient¡Barea of conductive material¡Blength of conductive material.The most different of experiment compare with previous is the area of conductive material.Therefore the area of conductive fiber in bipolar plate influences the efficiency of fuel cell a lot. Through the research¡Athe availability of the new bipolar plate composed of nonhomogeneous plate and conductive object is proven and the cause of its defect in efficiency is identified for improvement in practical application.
3

The Study of Electromagnetic Shielding Employing Woven Continuous Carbon Fiber Composites for 2.5Gb/s Transceiver Modules

Lee, Chien-hui 03 July 2004 (has links)
A High electromagnetic shielding, light weight, low cost plastic package is developed by using a woven continuous carbon fiber (WCCF) epoxy composite. Three different weaving types of WCCF, plain¡Bbalanced twill and uni-direction structure, are fabricated for understanding the shielding property of the WCCF composites. By weaving the WCCF in a balanced twill structure with excellent conductive network, it shows that the SE can reach to about 80dB under plane-wave source measurement and about 50dB in the near-field source measurement. By comparison of cost, weight, and shielding performance for optical transceiver modules fabricated by the housings of woven continuous carbon fiber, nanoscale hollow carbon nanocapulses (HCNCs) epoxy composites and nylon and liquid crystal polymer (LCP) with carbon fiber filler composite, the WCCF composites shows lower cost, light weight, and higher electromagnetic shielding than the other types of composites.
4

Feasibility study of photocatalysis on the volatile organic compounds using TiO2 coated activated carbon fiber

Wu, Yu-jiuan 06 September 2005 (has links)
This study combined photocatalytic technology with activated carbon adsorption to decompose gaseous pollutants. Gaseous pollutants were initially adsorbed and concentrated by activated carbon and could be further decomposed more effectively by photocatalytic technology. This study coated TiO2 on the activated carbon fiber (ACF) by a sol-gel process for conducting the adsorption and decomposition of acetone in a batch reactor. Operating parameters investigated in this study included the initial concentration of acetone (13.6 £gM and 27.2 £gM), reaction temperature (50¢J~70¢J), oxygen concentration (0.5%~20%), and water vapor (0 £gM~244.9 £gM). The incident UV light of 365 nm was irradiated by a 15-watt low-pressure mercury lamp placing above the photocatalytic batch reactor. The ACF coated with TiO2 was placed in the center of the reactor. Acetone was injected into the reactor to conduct photocatalytic tests. Reactants and products were analyzed quantitatively by a gas chromatography with electron capture detector (GC/ECD) and a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer). Results from the photocatalysis tests indicated that, among the commercial TiO2 (Degussa P-25), NO3-/TiO2 and SO42-/TiO2, SO42-/TiO2 had the best photoactivity reduced acetone concentration and reaction time substantially. The end products was mainly CO2 and CO, which resulted in the mineralization ratio above 95%. Results from the operating parameter tests revealed that the increase of the initial acetone concentration enhanced the amount of acetone adsorbed on the ACF, which however did not increase the reaction rate of acetone. Although the increase of reaction temperature could reduce the amount of acetone adsorbed on the ACF, decomposition rate of acetone could be promoted, so as the yield rate and mineralization ratio of products (CO2 and CO). Increasing oxygen concentration did not influence the decomposition significantly except for oxygen concentration lower than 1%. The increase of water vapor would slightly decrease the amount of acetone adsorbed on the ACF, which did not decrease the decomposition of acetone anyway. This study revealed that the decomposition of acetone on TiO2/ACF can enhance the mass transfer of acetone substantially.
5

APPLICATIONS OF MULTIWALL CARBON NANOTUBE COMPOSITES: MECHANICAL, ELECTRICAL AND THERMAL PROPERTIES

Weisenberger, Matthew Collins 01 January 2007 (has links)
Carbon nanotubes have now been a subject of intense research for approaching two decades. Although a short time relative to most conventional materials, much hype about the intrinsic properties of this material has now been substantiated by experiment. The results are conclusive that carbon nanotubes are truly phenomenal materials with highly desirable mechanical, electrical and thermal properties. Furthermore, multiwall carbon nanotubes (MWNTs) have emerged as the most economically viable and abundant form of carbon nanotubes, and therefore the most likely candidate for application. The key materials engineering challenge remains in effectively transferring their properties to macro-scale materials in the form of composites. It is here that research merges with application. This dissertation has therefore been directed to focus on carbon nanotube composites in an applied sense. Here, the state of the art is reviewed, and experimental results of carefully selected composite systems, studied in detail for (1) mechanical, (2) electrical and (3) thermal properties, are presented and discussed. In terms of mechanical properties, the effects of MWNTs for augmentation of the tensile properties of PAN-based carbon fiber, and fatigue performance of poly(methyl methacrylate) are investigated and reported. In MWNT composite PAN-based carbon fiber, the formation of an ordered interphase layer sheathing the nanotubes was observed in fracture surfaces, which indicated a clear importance of their function to template the growth of carbon formation in the PAN-based matrix fiber. These structures open up a route to nano-scale tailorability of the crystallographic morphology of the composite fibers. Large improvements in fatigue performance were observed in MWNT/PMMA composites compared to MWNT/chopped carbon fiber composites, and attributed to the nanometer scale dimensions of the MWNTs enabling them to mitigate submicron damage such as polymer crazing. In terms of electrical and thermal properties, MWNT/epoxy composites were superior to MWNT/carbon black composites. Furthermore, extremely large improvements in the thermal conductivity of epoxy were observed for epoxy-infiltrated aligned MWNT arrays. The alignment of the MWNTs was shown to play a dominant role in enabling the improvement. Finally, these results, in concert with the literature are discussed in terms of the application of carbon nanotubes in engineering materials.
6

An Investigation of Damage Arrestment Devices Application with Fastener/Hole Interaction

Balatbat, Richard Vincent S 01 September 2010 (has links)
This thesis presents a parametric study on the effects of how damage arrestment devices application interacts with a fastener in a composite sandwich panel. The primary objective of the damage arrestment device was to prevent the failure of the composite face sheet, such as crack propagation, around the hole/fastener joint. The damage arrestment devices are made of composite strips that are inserted under the face sheet to increase the overall structural strength of the panel and to prevent the propagation of failure along the hole. This was supposed to be a quicker and stronger alternative to potted inserts for composite sandwich panels for designer. The manufacturing curing cycle of the composite sandwich specimens has been carried out by using a Tetrahedron Composite Air Press. The press has been used to fabricate composite sandwich panels by applying constant pressure and variable heat to create panels with dimensions of 5” x 2” x .552”. The panels were stacked using a polyurethane foam, Last-A-Foam FR-6710 with two layers of a carbon-fiber/epoxy weave, LTM45, on both sides of the foam. The specimens were loaded under a compressive strain of 0.5 mm/min. The damage arrestment devices’ thickness was varied and tested under both monotonic and fatigue loading. The experimental results indicate that as the thickness of the device increased the overall strength of the part increased at a parabolic curve with it topping at a thickness of 0.065” and a strength increase of 109%. Under fatigue loading, a control group test case and damage arrestment device configuration case was tested. The experimental results indicate that both cases have similar fatigue trends but shows that the damage arrestment specimens are stronger due to the increase of structural strength. The experimental results were compared with numerical results or Finite Element Model. The results showed that numerical results can capture the linear or elastic portion of the experimental results having identical Elastic Modulus values. The models do differ in the maximum displacement of the specimen and the failure mode around the hole of the composite sandwich panel. The discrepancy in displacement and the failure mode was attributed to inaccurate loading on the hole of the composite sandwich panel and non-linear modeling of the solution. The correlation between the FEM and the experimental data was good enough in predicting the trends of the composite sandwich panels.
7

Studies of the Performance Decay of a DMFC and the Development of a 16-cell DMFC Stack

Huang, Yu-wei 11 September 2009 (has links)
In this paper, a 16-cell direct methanol fuel cell (called DMFC) stack was developed to power or charge a mobile phone without any voltage transformer. The various types of the performance decay of DMFCs are studied before a 16-cell DMFC stack is made. The decays due to improper storage are found and avoided. The influences of the MEA treatments on the performance are also studied. Eventually, we try to find the best storage and treatment methods to keep stacks in a good condition all the way. In order to solve the problem of methanol crossover lead to the cathode poisoned, it is necessary to operate under the proper methanol concentration and to discharge before finishing the whole experiment. It is also necessary to maintain MEAs in proper wetness so that the performance will not decline during storage. Additionally, the catalyst in the cathode will use Pt/Ru to replace Pt. This 16-cell DMFC stack is composed of two 8-banded MEAs and 16 carbon fiber bunches. Each MEA is made with 8 sets of electrodes on a piece of membrane. The stack with 16 cells will be connected in series outside of the reaction chamber. The weight and volume of this 16-cell DMFC stack are 55 g (not including 20 c.c. methanol solution) and 99 cm3. The total electrode is 50 cm2 (16-cell¡Ñ3.15 cm2 per cell). The power at voltage 4V is 1680mW when it is operating at room temperature and air breathing. The maximum power density can reach 33 mW/cm2. The specific power density is 22 mW/g and the volumetric power density is 16.9 mW/cm3. This stack can power or charge a mobile phone directly.
8

Size effects in reinforced concrete beams strengthened with CFRP straps

Augusthus Nelson, Levingshan January 2011 (has links)
No description available.
9

Minimizing uncertainty in cure modeling for composites manufacturing

Dykeman, Donna 05 1900 (has links)
The degree of cure and temperature are consistent variables used in models to describe the state of material behaviour development for a thermoset during cure. Therefore, the validity of a cure kinetics model is an underlying concern when combining several material models to describe a part forming process, as is the case for process modeling. The goals of this work are to identify sources of uncertainty in the decision-making process from cure measurement by differential scanning calorimeter (DSC) to cure kinetics modeling, and to recommend practices for reducing uncertainty. Variability of cure kinetics model predictions based on DSC measurements are investigated in this work by a study on the carbon-fiber-reinforced-plastic (CFRP) T800H/3900-2, an interlaboratory Round Robin comparison of cure studies on T800H/3900-2, and a literature review of cure models for Hexcel 8552. It is shown that variability between model predictions can be as large as 50% for some process conditions when uncertainty goes unchecked for decisions of instrument quality, material consistency, measurement quality, data reduction and modeling practices. The variability decreases to 10% when all of the above decisions are identical except for the data reduction and modeling practices. In this work, recommendations are offered for the following practices: baseline selection, balancing heats of reaction, comparing data over an extensive temperature range (300 K), choosing appropriate models to describe a wide range of behaviour, testing model reliability, and visualization techniques for cure cycle selection. Specific insight is offered to the data reduction and analysis of thermoplastic-toughened systems which undergo phase separation during cure, as is the case for T800H/3900-2. The evidence of phase separation is a history-dependent Tg-α relationship. In the absence of a concise outline of best practices for cure measurement by DSC and modeling of complex materials, a list of guidelines based on the literature and the studies herein is proposed.
10

Minimizing uncertainty in cure modeling for composites manufacturing

Dykeman, Donna 05 1900 (has links)
The degree of cure and temperature are consistent variables used in models to describe the state of material behaviour development for a thermoset during cure. Therefore, the validity of a cure kinetics model is an underlying concern when combining several material models to describe a part forming process, as is the case for process modeling. The goals of this work are to identify sources of uncertainty in the decision-making process from cure measurement by differential scanning calorimeter (DSC) to cure kinetics modeling, and to recommend practices for reducing uncertainty. Variability of cure kinetics model predictions based on DSC measurements are investigated in this work by a study on the carbon-fiber-reinforced-plastic (CFRP) T800H/3900-2, an interlaboratory Round Robin comparison of cure studies on T800H/3900-2, and a literature review of cure models for Hexcel 8552. It is shown that variability between model predictions can be as large as 50% for some process conditions when uncertainty goes unchecked for decisions of instrument quality, material consistency, measurement quality, data reduction and modeling practices. The variability decreases to 10% when all of the above decisions are identical except for the data reduction and modeling practices. In this work, recommendations are offered for the following practices: baseline selection, balancing heats of reaction, comparing data over an extensive temperature range (300 K), choosing appropriate models to describe a wide range of behaviour, testing model reliability, and visualization techniques for cure cycle selection. Specific insight is offered to the data reduction and analysis of thermoplastic-toughened systems which undergo phase separation during cure, as is the case for T800H/3900-2. The evidence of phase separation is a history-dependent Tg-α relationship. In the absence of a concise outline of best practices for cure measurement by DSC and modeling of complex materials, a list of guidelines based on the literature and the studies herein is proposed.

Page generated in 0.0369 seconds