• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 10
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 19
  • 18
  • 17
  • 16
  • 15
  • 15
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The leaching behaviour of a Ni-Cu-Co sulphide ore in an oxidative pressure-acid medium / Danie Strydom Smit

Smit, Danie Strydom January 2001 (has links)
Hydrometallurgical processing of sulphide concentrates is an attractive method for the selective extraction of valuable metals. The dissolution of minerals in a leaching process involves several electrochemical parameters that need to be investigated• to ensure the development and growth of the base metal industry in South Africa. A study has been carried out to elucidate the leaching mechanism of a nickel-coppercobalt sulphide concentrate in an oxidative pressure-acid medium. The sulphide concentrate studied in this research, comprises mainly of the minerals pyrrhotite, (Fe1_xS) with x = 0 to 0.2, pentlandite, (Ni,Fe)9S8 and chalcopyrite, (CuFeS2). The leaching behaviour of these minerals was successfully studied by means of Atomic Absorption (AA) measurements, Scanning '•Electron Microscopy (SEM) and Moss bauer spectroscopy, after leaching took place in an oxidative pressure-acid medium. The dissolution of the valuable metals was achieved effectively with recoveries of well over 90% for nickel, copper and cobalt under the specific conditions studied. Mechanical activation by means of ultra fine milling improved metal extraction with an average of approximately 40%, after a leaching period of 150 minutes. The most suitable conditions for the oxidative pressure-acid leaching of the mechanically treated nickel-copper-cobalt sulphide concentrate in a dilute sulphuric acid medium were found to be: particle size 80% - 10J.Lm; temperature l10°C; oxygen partial pressure 10 bar; sulphuric acid concentration 30 kg/ton; solids content 15% by mass and an impeller agitation rate of 800 r/min. The values of the apparent activation energies of nickel, copper and cobalt, extracted from the sulphide concentrate, were found to be 20.6 (± 4.4) kJ/mol K, 33.6 (± 4.2) kJ/mol K and 17.4 (± 3.5) kJ/mol K respectively. / Thesis (MIng (Chemical Engineering))--Potchefstroom University for Christian Higher Education, 2001
72

Investigation Of Structural, Electrical And Optical Properties Of Cu1-xagxinse2 Thin Films As A Function Of X Content

Gullu, Hasan Huseyin 01 September 2010 (has links) (PDF)
In this work, we will focus on the quaternary system Cu1-xAgxInSe2 (CAIS) to investigate the effects of silver (Ag) contribution and exchange with copper (Cu) in CuInSe2. This system is located between the ternary semiconducting chalcopyrite compounds CuInSe2 and AgInSe2. These are two most popular materials applied in photovoltaic cells because of their high optical absorption coefficient, which is an important factor for the manufacture of devices, direct energy gap with values Eg ~1.05 and 1.24 eV, respectively, and excellent thermal stabilities in air. As being a quaternary alloy, we expect that Cu1-xAgxInSe2 will show the advantage of a large degree of variation of their properties as a function of the composition, which allows adjusting of the band gap and other properties. We will analyze the behavior of Ag in the structure depending on the annealing and the effects of the Ag exchange to the Cu vacancies in this crystal structure by changing x (Ag content). The crystals will be characterized structurally by X-ray diffraction (XRD). It will be used to prove crystallinity, determine perfection and lattice parameters depending on composition. Surface morphology and stoichiometry will be examined using scanning electron microscope (SEM) equipped with EDXA. Moreover, electrical properties including the temperature dependent electrical conductivity, and carrier concentrations and mobility extracted from Hall effect measurements, and, optical properties including absorption coefficient, photoconductivity, spectral transmission, and optical band gap have been determined to characterize Cu1-xAgxInSe2 thin films deposited using e-beam evaporation technique.
73

Electronic structures of the sulfide minerals sphalerite, wurtzite, pyrite, marcasite, and chalcopyrite

Jones, Robert January 2006 (has links)
The electronic spectra of sulfide minerals can be complex, and their features difficult to assign. Often, therefore, they are interpreted using electronic-structure models obtained from quantum-chemical calculations. The aim of this study is to provide such models for the minerals sphalerite, wurtzite, pyrite, marcasite, and chalcopyrite. All are important minerals within a mining context, either as a source for their component metals or as a gangue mineral. They are also semiconductors. Each is the structural archetype for a particular class of semiconductors, and so a knowledge of their electronic structures has wider applicability. / PhD Doctorate
74

Electron-nuclear double resonance studies of point defects in AgGaSe₂ and ZnGeP₂

Stevens, Kevin T. January 1999 (has links)
Thesis (Ph. D.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains ix, 165 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 118-122).
75

First-Principles Study of Thermodynamic Properties in Thin-Film Photovoltaics

January 2011 (has links)
abstract: This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2. / Dissertation/Thesis / M.S. Materials Science and Engineering 2011
76

Engineering Acidithiobacillus ferrooxidans for metal corrosion and recovery

Inaba, Yuta January 2021 (has links)
Biomining technologies have been developed to use acidophilic microorganisms and the reactions that they catalyze to extract metals from ores in the mining industry. This biological processing through hydrometallurgy is responsible for the production of a significant portion of the world’s copper and gold supplies. Acidithiobacillus ferrooxidans is one of the better-studied and important chemolithotrophic bacterial species that is a part of the natural consortia found in mines across the world. This acidophile is unique in the array of redox reactions it participates in as it is capable of oxidizing both iron and reduced inorganic sulfur species, enabling dissolution of metal from minerals. As the transition to renewable energy continues and the demand for electronic devices grows, more copper and other valuable metals will need to be extracted from increasingly low-grade ores, such as chalcopyrite. Additionally, there has been a growing interest in further developing this biotechnology for the leaching and the recovery of valuable metals from scrap alloys and electronic waste as these feedstock streams can contain rare metals at concentrations above those found in the earth. However, the challenge in deploying biomining to these applications involves understanding the interactions that can potentially inhibit the extraction of these metals. In this dissertation, we expanded the genetic toolbox for A. ferrooxidans by using a transposition technique for the chromosomal integration of exogenous genes. The ability to permanently modify the genome enables engineering of strains that can be used in industry without the need of maintaining selective pressure for plasmid-based expression. Next, we investigated the potential role of A. ferrooxidans in microbially influenced corrosion. We focused on finding conditions that would enable the corrosion of stainless steel, which is resistant to the medium typically used for the growth of the bacterium. Additionally, the further optimization of the corrosive environment and the introduction of genetically engineered cells led to additional corrosion of a higher-grade stainless steel. Then, we explored how altering the bioavailability of sulfur in different formulations could shift the population phenotypes in A. ferrooxidans. We found that a unified description with a few parameters could describe the wide range of behaviors observed in the presence of iron and sulfur. Thus, using this improved understanding of A. ferrooxidans, we are able to engineer phenotypes of interest to generate robust strains that can modulate leaching conditions.
77

Development of novel materials for solar cells

Takei, Klara January 2015 (has links)
More efficient and cheaper solar cells are necessary if photovoltaics are to play a major rolein the field of sustainable power generation. Copper indium gallium selenide (CIGSe) is one of the best suited materials for thin film solar cell absorbers. One production method for thin film manufacturing is sputtering, a fast, high-yield, all-dry process that can be performed in an unbroken vacuum chain. The sputter target, which provides the raw material for this process, is an important link to obtain high quality films. Furthermore, the targets stands for the single largest cost in solar cells produced through the method. Hence, driving down the target production costs while maintaining or increasing quality is a vital route towards competitive photovoltaic power generation. In this project, compound CIGSe sputter target material was produced via mechanical alloying of elemental raw materials, followed by hot pressing. The resulting material obtained a relative density above 90% in all samples, with close compositional matching and grain sizes between 20-50 µm. Electrical characterization indicated predominantly p-type majority carriers, and the resistivity was within the range of industrially produced targets. Suitable process parameters are suggested as follows: for ball milling; 600rpm rotational speed, a ball-to-powder ratio of 5:1, and a milling time of 60-120 min. For pressing: 650-750˚C peak temperature, maintained for 1-2 h under 25-60 MPa pressure. 30 min dwell time at peak temperature before pressure application was found to reduce porosity. An initial composition of 23.2/20/6.5/50 at% of Cu, In, Ga, and Se, respectively, was found appropriate to obtain a final composition close to 22.8/20/7/50.2 at%. The project has proven that mechanical alloying combined with hot pressing provides a promising route towards efficient sputter target manufacturing, where the reduction of process operations compared to conventional manufacturing methods entails an optimistic economic outlook.
78

Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption

Mendiratta, Neeraj K. 05 May 2000 (has links)
Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10-4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22 – 30 0C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones. / Ph. D.
79

Spatial and temporal evolution of fluids in hydrothermal ore deposits

Lecumberri Sanchez, Pilar 10 June 2013 (has links)
Magmatic-hydrothermal systems typically have vertical extents of several hundred<br />meters and their geochemical characteristics (e.g. mineral assemblages) vary considerably<br />over that vertical extent. As a consequence the expression in outcrop varies depending on<br />the level of erosion. Therefore understanding the geochemical zonation of magmatic-hydrothermal<br />ore deposits opens the possibility to detect deep magmatic-hydrothermal<br />systems, and to assess qualitatively the degree of erosion that has taken place in the area<br />and at which level the mineralization may occur. This dissertation presents the<br />characterization of two shallow hydrothermal systems and their potential relations with<br />deeper magmatic-hydrothermal systems. In addition, this dissertation develops the<br />equations to directly interpret thermometric data from the fluid inclusion type dominant in<br />one of those deposits (fluid inclusions that homogenize by halite disappearance).<br />Red Mountain, AZ is a porphyry copper system with a well-preserved lithocap<br />providing an ideal candidate to characterize the shallow expression of porphyry copper<br />systems in the southwestern US. The distribution of fluid inclusions, alteration mineralogy<br />and grade indicate that the intrusive responsible for the mineralization was only partially<br />intercepted during the exploration program and that one single magmatic event was likely<br />responsible for the mineralization detected. Fluid inclusion types and clay minerals are<br />systematically distributed within the deposit. The fluid responsible for the shallow<br />hypogene mineralization was a low pH-intermediate temperature-low density fluid while a<br />high salinity fluid was responsible for deep mineralization.<br />Wutong is a Pb-Zn-Ag deposit in the Nanling belt (southeast China). The combination<br />of fluid inclusion and mineral thermometry indicates that the Wutong deposit formed at<br />relatively low pressures. The age and isotopic composition of the mineralization indicates<br />that the deposit formed during the Cretaceous from crustal derived fluids. The occurrence<br />of a shallow magmatic-hydrothermal system of Cretaceous age in this region suggests that<br />Cretaceous intrusions, despite not outcropping very commonly in this particular region may<br />occur at deeper levels. / Ph. D.
80

Surface Forces in Thin Liquid Films of H-Bonding Liquids Confined between Hydrophobic Surfaces

Xia, Zhenbo 30 November 2015 (has links)
Hydrophobic interaction plays an important role in biology, daily lives, and a variety of industrial processes such as flotation. While the mechanisms of hydrophobic interactions at molecular scale, as in self-assembly and micellization, is relatively well understood, the mechanisms of macroscopic hydrophobic interactions have been controversial. It is, therefore, the objective of the present work to study the mechanisms of interactions between macroscopic hydrophobic surfaces in H-bonding liquids, including water, ethanol, and water-ethanol mixtures. The first part of the present study involves the measurement of the hydrophobic forces in the thin liquid films (TLFs) confined between two identical hydrophobic surfaces of contact angle 95.3o using an atomic force microscope (AFM). The measurements are conducted in pure water, pure ethanol, and ethanol-water mixtures of varying mole fractions. The results show that strong attractive forces, not considered in the classical DLVO theory, are present in the colloid films formed with all of the H-bonding liquids tested. When an H-bonding liquid is confined between two hydrophobic surfaces, the vicinal liquid molecules form clusters in the TLFs and give rise to an attractive force. The cluster formation is a way to minimize free energy for the molecules denied of H-bonding with the substrates. Thus, solvophobic forces are the result of the antipathy between the CH2- and CH3-coated surface and H-bonding liquid confined in the film. A thermodynamic analysis of the solvophobic forces measured at different temperatures support this mechanism, in which solvophobic interactions entail decreases in the excess film enthalpy and entropy. The former represents the energy gained by building clusters, while the latter represents loss of entropy due to structure building. Thus, hydrophobic interaction may be a subset of solvophobic interaction. The solvophobic forces are strongest in pure water and pure ethanol, and decrease when one is added to the other. Adding a very small amount of ethanol to water sharply reduced the solvophobic force due to the adsorption of the former with an inverse orientation. An exposure of the OH-group toward the aqueous phase decreases the antipathy between the surface and H-bonding liquid and hence causes the hydrophobic (or solvophobic) forces to decrease. The second part of the study involves the measurement of the hydrophobic forces in the wetting films of water using the force apparatus for deformable surfaces (FADS). This new instrument recently developed at Virginia Tech is designed to monitor the deformation of bubbles to determine the surface forces in wetting films. In effect, an air bubble is used a force sensor. The measurements have been conducted with gold, chalcopyrite, and galena as substrates. The results obtained with all three minerals show that hydrophobic force increases with increasing water contact angle, suggesting that hydrophobic forces are inherent properties of hydrophobic surfaces rather than created from artifacts such as preexisting nanobubbles and/or cavitation. A utility of the intrinsic relationship between hydrophobic force and contact angle is to predict flotation kinetics from the hydrophobicity of the minerals of interest. / Ph. D.

Page generated in 0.042 seconds