• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 18
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 34
  • 32
  • 22
  • 16
  • 15
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

[en] DETERMINATION OF HYDRAULIC PROPERTIES RESIDUAL SOILS IN RIO DE JANEIRO / [pt] DETERMINAÇÃO DE PROPRIEDADES HIDRÁULICAS DE SOLOS RESIDUAIS DO RIO DE JANEIRO

JOAO LUIS TEIXEIRA DE MELLO G PINTO 20 August 2018 (has links)
[pt] A cidade do Rio de Janeiro apresenta relevo acidentado e clima tropical. Os processos intempéricos que ocorrem na litologia geram os solos residuais e coluvionares. Tendo em vista a limitação espacial de áreas planas, a ocupação antrópica se direciona as áreas de encosta, onde estes solos estão presentes. Ao longo dos anos tem-se estudado que a maioria dos movimentos de massa da cidade do Rio de Janeiro estão relacionados à perda de sucção mátrica do solo. O presente trabalho visa, portanto, a obtenção de parâmetros hidráulicos dos solos não-saturados de maneira simples, rápida e pouco onerosa a fim de viabilizar estudos da infiltração de água em taludes. Para isso, foram estudadas 6 áreas ao longo do Rio de Janeiro, onde a escolha se baseou.na rocha de origem formadora dos solos residuais. Os ensaios do trabalho utilizados foram o Ensaio de Infiltração Monitorada (EIM) e caracterização física, e para efeitos comparativos também foram executados alguns ensaios de Guelph, papel filtro e permeabilidade saturada triaxial. O modelo de interpretação não-saturado usado foi o modelo de van Genutchen-Maulem, e a obtenção de três dos cinco parâmetros foi feita através de uma análise inversa. A curva a ser retroanalisada no ensaio é a série temporal da sucção mátrica. / [en] Rio de Janeiro city is sited on a rugged relief and has a tropical climate. The meteoric processes that take place on its lithology generate the residual and transported soils. Accounting for its limited flat urban space, its habitants tend to live in steep slope areas where such soils are present. For a long time studies have taken place to characterize mass movements and their conclusions relate most of them to the loss of soils matric suction. Therefore the study aims to obtain the unsaturated soil parameters in a simple, rapid and low cost way, which may help future studies of water infiltration on slopes. And thus, 6 locations in Rio de Janeiro were choosen based on the criteria of soil formation, attending different types of gneissic bedrocks. The constitutive model used was the van Genuchten and the method to obtain three of its five parameters was by solving an inverse problem. The curve to be optimized comes from the monitored infiltration test which consists on the record of the matric suction over a constant head infiltration test.
52

Evaluation of Non-Contact Sampling and Detection of Explosives using Receiver Operating Characteristic Curves

Young, Mimy 07 November 2013 (has links)
The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.
53

Validating Machine and Human Decision-Making in Forensic Fire Debris Analysis

Whitehead, Frances A 01 January 2024 (has links) (PDF)
This work presents a background on the chemical complexity of fire debris analysis, including an ever-present matrix of pyrolysis products as the catalyst that led to the creation of the National Center for Forensic Science's Fire Debris Database. A selection of these 1,000+ casework-relevant ground truth samples was used to create two newly proposed analyst workflows to connect the current method of categorical reporting with evaluative reporting practices reflective of the strength of the evidence. Both workflows use linear sequential unmasking to help mitigate bias, a discrete scoring system for quantification of the analysis, and receiver operating characteristic (ROC) curves to bridge together categorical and probabilistic reporting by indicating the optimum decision threshold the analysts are operating from when they make a decision. Both workflows also allow a machine-learning component to be included in evaluating the evidence and are practical methods for obtaining validated performances for human and machine decisions. The second workflow includes subjective logic, which provides a means of determining the uncertainty inherent to the opinion made by the analyst and the machine learning computational model. ‘Fuzzy categories' and an opinion triangle connect the opinion offered by the analyst given their perceived uncertainty to the ROC curve so a categorical decision can be made. For each workflow, three analysts independently assessed 20 randomly chosen samples from the Fire Debris Database and followed the ASTM E1618-19 standard fire debris analysis method. The resultant area under the ROC curve for each analyst for each workflow was 0.90 or higher, indicating that all were in the very good to excellent range for diagnostic classifiers, as was the machine learning model tested in the second workflow. Recommendations for implementing a performance validation workflow, how repetitive engagement can help the individual analyst and insights on using these for performance validation and training purposes are also included.
54

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
55

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
56

Etudes des propriétés hydromécaniques d’un sable limoneux : de la saturation partielle à la saturation complète / The study of the hydro-mechanical properties of silty sand : from partial to complete saturation

Hoang, Ngoc Lan 13 June 2017 (has links)
Cette thèse concerne la caractérisation expérimentale d’un sable limoneux provenant du barrage de Livet – Gavet (38) dans le cadre du projet ANR TerreDurable avec plusieurs objectifs : 1- Caractériser au travers d’essais de laboratoire le comportement hydromécanique d’un sable fin limoneux (sol A1 dans la classification GTR) en fonction de son état de saturation. Lors de cette étude, un accent particulier est porté sur la caractérisation de ce comportement dans le domaine proche de la saturation. 2- Interpréter le comportement hydrique du matériau sur chemin de drainage – imbibition en relation avec l’analyse de sa microstructure. 3- Fournir d’un point de vue général une base de données et d’analyses exhaustive permettant le développement et la calibration de modèles de comportement des sols fins proches de la saturation, en particulier en considérant des chemins de chargement hydromécanique complexes. Pour l’ensemble de cette étude, le matériau est considéré sous deux états : soit à l’état de pâte (matériau normalement consolidé) préparée à une teneur en eau proche de la limite de liquidité, soit sous forme compactée (matériau sur-consolidé) à différentes énergies de compactage et différentes teneurs en eau initiales. / This thesis concerns the experimental characterization of a silty sand from the Livet - Gavet dam (38) as part of the ANR TerreDurable project, for following objectives: 1- Through laboratory tests, characterize the hydro-mechanical behaviour of a fine silty sand (Type A1 in the GTR classification) according to its saturation state. In this study, particular emphasis is placed on the characterization of this behaviour in the near-saturated domain. 2- Interpret the water behaviour of material on the drainage - imbibition cycles, in relation to the analysis of its microstructure. 3- From a general point of view, provide a comprehensive database and analysis allowing the development and calibration of models of near-saturated fine soil's behaviour, in particular, by considering complex hydro-mechanical loading paths. For all tests in this study, the material is considered in two states: either in the state of paste (normally consolidated material) prepared at water content close to the limit of liquidity, or in compacted state (over consolidated material) at different compaction energies and different initial water contents.
57

Numerisk modellering av deformationer och portryck i en experimentdamm : Jämförelse mellan in-situmätningar och FE-simuleringar i PLAXIS 2D / Numerical modelling of deformations and pore pressures in an experimental embankment dam : Comparison between in-situ measurements and FE simulations in PLAXIS 2D

Sjödin, Adam January 2021 (has links)
Under hösten 2019 har Vattenfall Research & Development byggt en experimentell jordfyllningsdamm i Älvkarleby med dimensionerna 20x15x4 meter. Delar av experimentdammen är konventionellt konstruerade och har installerats med geoteknisk utrustning som utgörs av bland annat inklinometrar och portrycksgivare. Andra delar av experimentdammen har byggts in med defekter som ska representera åldersrelaterade skador eller utförandefel vid konstruktion. Experimentdammen ger möjlighet att under realistiska och kontrollerade förhållanden studera det mekaniska beteendet i samband med fyllning av vatten och vidare drift med hjälp av den geotekniska instrumenteringen samt med stöd av numerisk modellering. I detta examensarbete, som utgör en del av Luleå tekniska universitets forskningsprojekt mot experimentdammen, har experimentdammens beteende i form av deformationer och portryck studerats under uppfyllnad och drift fram till sommaren 2021. Detta har utförts genom simuleringar i det finita elementprogrammet PLAXIS 2D 2019 för en tvärsektion av experimentdammen i plant-deformationstillstånd. Mätpunkterna i modellen har baserats på faktisk placering av den geotekniska instrumenteringen. Den finita elementmodellen av experimentdammen har konstruerats och fyllts med vatten enligt dokumentation från fält. En flödes-deformationsanalys, med den konstitutiva modellen Hardening Soil och den hydrauliska modellen van Genuchten, har tillämpats för att modellera den simultana utvecklingen av portryck och deformationer under uppfyllnad. Materialparametervärden för den finita elementmodelleringen har erhållits från Vattenfall R&D, relevant litteratur och från fält- och laboratorieförsök. I fält har vattenvolymeterförsök utförts på tätkärnan och i laboratoriemiljö har modifierad proctorpackning, dränerade konventionella triaxialförsök, permeabilitetsförsök och övertryckskapillarimeterförsök utförts på tätkärnans material. Resultatet från övertryckskapillarimeterförsök har anpassats mot den hydrauliska modellen van Genuchten för att uppskatta en vattenbindningskurva som beskriver det icke-linjära förhållandet mellan jordens vatteninnehåll och porundertryck, det vill säga det omättade förhållandet. Vattenbindningskurvor för övriga materialzoner har uppskattats baserat på litteratur. Verktyget PLAXIS SoilTest har använts för att optimera materialparametervärden för tätkärnan mot resultat från utförda triaxialförsök. Materialparametrarna E50ref, Eoedref, Eurref, m, c, och ϕ har optimerats fram till brott i triaxial belastning. En känslighetsanalys har utförts för reduktion av filterzonernas och stödfyllningens styvhetsmoduler och deras inverkan på horisontella deformationer i dammkroppen under uppfyllnad. Känslighetsanalysen indikerar att finfiltrets styvhetsmoduler har störst inverkan och grovfiltrets styvhetsmoduler har minst inverkan på de horisontella deformationerna. Studiens resultat visar att magnituden av horisontella och vertikala deformationer kommer vara som störst i den övre delen av dammkroppen och uppgår där till 3,5 respektive 4,0 mm. Dammkroppens huvudsakliga rörelse kommer vara i nedströms riktning och det observerades hur en kontaktzon mellan uppströms filterzon och tätkärnan utgör en gräns för riktning av deformationer. Faktiskt uppmätta rörelser i installerade inklinometrar kunde inte jämföras mot deformationer i den finita elementmodellen eftersom författarens tolkning indikerar på att botten av inklinometrarna har rört på sig, och mätpunkterna i botten av modellen är fixerade. Modellen visar hur en fördröjd utveckling av vattenmättnad sker genom tätkärnan, där uppströms sida av tätkärnan reagerar snabbare på förändringar i vattennivå jämfört med nedströms sida av tätkärnan som uppvisar en fördröjd respons. Vid en sänkning av vattennivån observerades hur tätkärnan håller kvar vatten ovan portryckslinjen medan de grövre materialen dränerar i takt med vattennivåns sänkning. Utvecklingen av de simulerade portrycken i modellen under uppfyllnad och drift överensstämmer bra med de uppmätta portrycken i experimentdammen, när portrycken är positiva. Det observeras hur den finita elementmodellen överskattar negativa portryck (porundertryck). Portrycken i modellen når ett stadigt tillstånd ungefär 115 dagar efter att fyllningen av vatten påbörjats. Den finita elementmodellen lyckas att återge det teoretiska beteendet av jordfyllningsdammar under fyllning i form av huvudsakliga riktningar av deformationer och utveckling av vattenmättnad i tätkärnan. Denna studie bidrar till en djupare förståelse för experimentdammens, och i allmänhet jordfyllningsdammars, mekaniska beteende under uppfyllnad. Resultaten från den finita elementmodellen kan ur ett dammsäkerhetsperspektiv användas för erhålla indikationer på utvecklingen av deformationer, portryck och vattenmättnadsgrad i jordfyllningsdammar under uppfyllnad, och även under en tillfällig sänkning av vattennivån under den första fyllningen. Studien ger också indikationer på vilka materialparametrar som är viktiga vid numerisk modellering av mekaniskt beteende i jordfyllningsdammar. / During the autumn of 2019, Vattenfall Research & Development constructed an experimental embankment dam in Älvkarleby with the dimensions 20x15x4 metres. Parts of the experimental dam are conventionally constructed and have been equipped with geotechnical instrumentation which consist of, among other things, inclinometers and pore pressure transducers. Other parts of the experimental dam have built in defects to represent age-related damages or execution errors during construction. The experimental embankment dam provides the opportunity to, under realistic and controlled conditions, study the mechanical behaviour during filling of water and operation by means of the geotechnical instrumentation and the use of numerical modelling. In this master’s thesis, which forms part of Luleå University of Technology’s research project towards the experimental dam, the behaviour of the experimental dam in terms of deformations and pore pressures have been studied during filling and operation until the summer of 2021. This has been performed by simulations in the finite element program PLAXIS 2D 2019 for a cross section of the experimental dam under plane-strain conditions. Measuring points in the model have been based on the actual location of the geotechnical instrumentation. The finite element model of the experimental dam has been constructed and filled according to documentation from field. A fully-coupled flow deformation analysis, with the constitutive model Hardening Soil and hydraulic model van Genuchten, has been utilised to model the simultaneous development of pore pressure and deformations during filling. Values of material parameters for the finite element modelling have been received from Vattenfall R&D, relevant literature and from field- and laboratory tests. In the field, balloon tests have been performed on the core material. In laboratory environment, modified proctor compaction tests, drained conventional triaxial tests, permeability tests and pressure plate tests have been performed on the core material. Results from the pressure plate tests have been adapted to the hydraulic model van Genuchten to estimate a soil-water characteristic curve in order to describe the non-linear relation between the water content and suction in the soil, i.e. unsaturated conditions. Soil-water characteristic curves for the other material zones have been estimated based on literature. The tool PLAXIS SoilTest has been used to optimise material parameter values of the core against the results from conducted triaxial tests. The material parameters E50ref, Eoedref, Eurref, m, c, and ϕ have been optimised until failure in triaxial loading. A sensitivity analysis has been carried out, by reducing stiffness moduli of the filter zones and the shoulder material, to investigate the influence on horizontal deformations in the dam body during filling. The sensitivity analysis indicates that the stiffness moduli of the fine filter have the largest impact and the stiffness moduli of the coarse filter have the least impact on the horizontal deformations. The results of the study show that the magnitude of horizontal and vertical deformations will be largest in the upper part of the dam body and amounts to 3.5 and 4.0 mm, respectively. The main movement of the dam body will be in the downstream direction and it was observed how a contact zone between the upstream filter zone and the core forms a boundary for direction of deformations. Actual measured movements in the installed inclinometers could not be compared to deformations in the finite element model because the author’s interpretation indicates that the bottom of the inclinometers have moved, and the measuring points at the bottom of the model are fixed. The model shows how a delayed development of saturation occur through the core, where the upstream side of the core responds more quickly to changes in water level compared with the downstream side of the core which show a delayed response. At a lowering of the water level, it was observed how the core retains water above the phreatic line while the coarser materials drain as the water level decreases. Development of the simulated pore pressures in the model during filling and operation corresponds well with the measured pore pressures in the experimental dam, when the pore pressures are positive. It is observed how the finite element model overestimates negative pore pressures (suction). The pore pressures in the model reaches a steady state approximately 115 days after filling of water started. The finite element model succeeds in reproducing the theoretical behaviour of embankment dams during filling in terms of main directions of deformations and development of saturation in the core. This study contributes to a deeper understanding of the experimental dam, and in general mechanical behaviour of embankment dams during filling. The results from the finite element model can be used from a dam safety perspective to obtain indications on the development of deformations, pore pressures and degree of saturation in embankment dams during filling, and also for a temporary lowering of the water level during the first filling. The study also provides indications of which material parameters that are of importance in numerical modelling of mechanical behaviour in embankment dams.
58

Análisis de la envolvente de falla de un suelo fino mediante la succión matricial utilizando el método de talud infinito aplicado a una cobertura de talud

Linares Ramos, Alexander Yamil, Mejía Melo, Paola 30 October 2020 (has links)
La construcción de coberturas en zonas alto andinas se ha convertido en una pieza clave para disminuir los pasivos ambientales y, a la vez, contribuir el desarrollo del país gracias a la minería. Gran parte del terreno en estas zonas son suelos arcillosos cuyo comportamiento es impredecible porque presentan cambios de volumen abruptos según la variación de saturación del suelo. Quienes transitan por carreteras en taludes de este tipo de suelo, corren alto riesgo debido al deslizamiento que sufren los taludes cada año. En este tipo de taludes se producen deslizamientos cuando el suelo arcilloso se encuentra parcialmente saturado, ya que en estas condiciones el suelo no es estable. Por ello, se realizaron los estudios de estabilidad de taludes de suelo parcialmente saturado con el método de talud infinito. Se construyó la envolvente de falla del suelo parcialmente saturado con los valores del ensayo del papel filtro y corte directo de acuerdo con la saturación a la que se encuentre sometido. Estos valores serán importantes para el cálculo del factor de seguridad, el cual se obtuvo a partir de una hoja de cálculo propuesta en esta investigación. Finalmente, se validó la hoja de cálculo con el software Geostudio donde se obtuvo una variación dentro del rango de significancia +-5%. Se concluyó que el análisis de estabilidad de talud de cobertura de un suelo parcialmente saturado proporciona un valor de factor de seguridad a partir de un análisis que simula con mayor exactitud el comportamiento del suelo. / The construction of hedges in high Andean areas has become a key element in reducing environmental liabilities and, at the same time, contributing to the development of the country thanks to mining. Much of the terrain in these areas is clay soils whose behavior is unpredictable because they present abrupt volume changes depending on the variation in soil saturation. Those who travel on roads on slopes of this type of soil are at high risk due to the landslide suffered by the slopes every year. In this type of slopes, landslides occur when the clay soil is partially saturated, since under these conditions the soil is not stable. For this reason, the stability studies of partially saturated soil slopes were carried out with the infinite slope method. The partially saturated soil failure envelope was constructed with the values ​​of the filter paper test and direct cut according to the saturation to which it is subjected. These values ​​will be important for the calculation of the safety factor, which was obtained from a spreadsheet proposed in this investigation. Finally, the spreadsheet was validated with the Geostudio software, where a variation was obtained within the range of significance + -5%. It was concluded that the slope stability analysis of a partially saturated soil cover provides a factor of safety value from an analysis that more accurately simulates soil behavior. / Tesis

Page generated in 0.0293 seconds