Spelling suggestions: "subject:"[een] COMPRESSIBLE"" "subject:"[enn] COMPRESSIBLE""
321 |
Analysis of Compressible and Incompressible Flows Through See-through Labyrinth SealsWoo, Jeng Won 2011 May 1900 (has links)
The labyrinth seal is a non-contact annular type sealing device used to reduce the internal leakage of the working fluid which is caused by the pressure difference between each stage in a turbomachine. Reducing the leakage mass flow rate of the working fluid through the labyrinth seal is desirable because it improves the efficiency of the turbomachine.
The carry-over coefficient, based on the divergence angle of the jet, changed with flow parameters with fixed seal geometry while earlier models expressed the carry-over coefficient solely as a function of seal geometry. For both compressible and incompressible flows, the Reynolds number based on clearance was the only flow parameter which could influence the carry-over coefficient. In the case of incompressible flow based on the simulations for various seal geometries and operating conditions, for a given Reynolds number, the carry-over coefficient strongly depended on radial clearance to tooth width ratio. Moreover, in general, the lower the Reynolds number, the larger is the divergence angle of the jet and this results in a smaller carry-over coefficient at lower Reynolds numbers. However, during transition from laminar to turbulent, the carry-over coefficient reduced initially and once the Reynolds number attained a critical value, the carry-over coefficient increased again. In the case of compressible flow, the carry-over coefficient had been slightly increased if radial clearance to tooth width ratio and radial clearance to tooth pitch ratio were increased. Further, the carry-over coefficient did not considerably change if only radial clearance to tooth width ratio was decreased. The discharge coefficient for compressible and incompressible flows depended only on the Reynolds number based on clearance.
The discharge coefficient of the tooth in a single cavity labyrinth seal was equivalent to that in a multiple tooth labyrinth seal indicating that flow downstream had negligible effect on the discharge coefficient. In particular, for compressible fluid under certain flow and seal geometric conditions, the discharge coefficient did not increase with an increase in the Reynolds number. It was correlated to the pressure ratio, Pr. Moreover, it was also related to the fact that the flow of the fluid through the constriction became compressible and the flow eventually became choked.
At low pressure ratios (less than 0.7), Saikishan’s incompressible model deviated from CFD simulation results. Hence, the effects of compressibility became significant and both the carry-over coefficient compressibility factor and the discharge coefficient compressibility factor needed to be considered and included into the leakage model.
The carry-over coefficient compressibility factor, phi, had two linear relationships with positive and negative slopes regarding the pressure ratios. This result was not associated with the seal geometry because the seal geometry ratios for each instance were located within the nearly same ranges. Further, the phi-Pr relationship was independent of the number of teeth regardless of single and multiple cavity labyrinth seals.
The discharge coefficient compressibility factor, psi, was a linear relationship with pressure ratios across the tooth as Saikishan predicted. However, in certain flow and seal geometric conditions, Saikishan’s model needed to be modified for the deviation appearing when the pressure ratios were decreased. Hence, a modified psi-Pr relationship including Saikishan’s model was presented in order to compensate for the deviation between the simulations and his model.
|
322 |
Qualification des simulations numériques par adaptation anisotropique de maillagesNguyen-Dinh, Maxime 19 March 2014 (has links) (PDF)
La simulation numérique est largement utilisée pour évaluer les performances aérodynamiques des aéronefs ainsi qu'en optimisation de forme. Ainsi l'objectif de ces simulations est souvent le calcul de fonctions aérodynamiques. L'objet de cette thèse est d'étudier des méthodes d'adaptation de maillages basées sur la dérivée totale de ces fonctions par rapport aux coordonnées du maillage (notée dJ/dX). Celle-ci pouvant être calculée par la méthode adjointe discrète. La première partie de cette étude concerne l'application de méthodes d'adaptation de maillages appliquées à des écoulements de fluides parfaits. Le senseur qui détecte les zones de maillage à raffiner s'appuie sur la norme de cette dérivée pour adapter des maillages pour le calcul d'une fonction J. La seconde partie du travail est la construction et l'étude de critères plus fiables basés sur dJ/dX pour d'une part adapter des maillages et d'autre part estimer si un maillage est bien adapté ou non pour le calcul de la fonction J. De plus une méthode de remaillage plus efficace basée sur une EDP elliptique est aussi présentée. Cette nouvelle méthode est appliquée pour des écoulements bidimensionnels de fluides parfaits ainsi que pour un écoulement décrit par les équations RANS. La dernière partie de l'étude est consacrée à l'application de la méthode proposée à des cas tridimensionnels d'écoulement RANS sur des géométries d'intérêt industriel.
|
323 |
Interakce stlačitelného proudění a struktur / Fluid-structure interaction of compressible flowHasnedlová, Jaroslava January 2012 (has links)
Title: Fluid-structure interaction of compressible flow Author: RNDr. Jaroslava Hasnedlová Department: Department of Numerical Mathematics, Institute of Applied Mathematics Supervisors: Prof. RNDr. Miloslav Feistauer, DrSc., Dr. h. c., Prof. Dr. Dr. h. c. Rolf Rannacher Supervisors' e-mail addresses: feist@karlin.mff.cuni.cz, rannacher@iwr.uni-heidelberg.de Abstract: The presented work is split into two parts. The first part is devoted to the theory of the discontinuous Galerkin finite element (DGFE) method for the space-time discretization of a nonstationary convection-diffusion initial-boundary value problem with nonlinear convection and linear diffusion. The DGFE method is applied sep- arately in space and time using, in general, different space grids on different time levels and different polynomial degrees p and q in space and time discretization. The main result is the proof of error estimates in L2 (L2 )-norm and in DG-norm formed by the L2 (H1 )-seminorm and penalty terms. The second part of the thesis deals with the realization of fluid-structure interaction problem of the compressible viscous flow with the elastic structure. The time-dependence of the domain occupied by the fluid is treated by the ALE (Arbitrary Lagrangian-Eulerian) method, when the compress- ible Navier-Stokes equations are formulated in...
|
324 |
Abordagens do tipo livre de jacobiana na simulação do escoamento de fluidos compressíveis em meios porosos / Abordagens do tipo livre de jacobiana na simulação do escoamento de fluidos compressíveis em meios porosos / Study of a Jacobian-free approach in the simulation of compressible fluid flows in porous media using a derivative-free spectral method / Study of a Jacobian-free approach in the simulation of compressible fluid flows in porous media using a derivative-free spectral methodGisiane Santos Simão Ferreira 30 September 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos. / The development of Jacobian-free software for solving problems formulated by nonlinear partial differential equations is of increasing interest to simulate practical engineering processes. This work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation of flows in porous media. The model considered here is the one employed to describe the displacement of miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid mixture varies exponentially with the pressure. The spectral algorithm used is a modern method for solving large-scale nonlinear systems, which does not solve linear systems, nor use any explicit information associated with the Jacobin matrix, being a Jacobian-free approach. Two dimensional problems are presented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable and efficient method for simulation of compressible flows in porous media.
|
325 |
Combining Discrete Equations Method and Upwind Downwind-Controlled Splitting for Non-Reacting and Reacting Two-Fluid Computations / Combining Discrete Equations Method and Upwind Downwind-Controlled Splitting for Non-Reacting and Reacting Two-Fluid ComputationsTang, Kunkun 14 December 2012 (has links)
Lors que nous examinons numériquement des phénomènes multiphasiques suite à un accidentgrave dans le réacteur nucléaire, la dimension caractéristique des zones multi-fluides(non-réactifs et réactifs) s’avère beaucoup plus petite que celle du bâtiment réacteur, cequi fait la Simulation Numérique Directe de la configuration à peine réalisable. Autrement,nous proposons de considérer la zone de mélange multiphasique comme une interface infinimentfine. Puis, le solveur de Riemann réactif est inséré dans la Méthode des ÉquationsDiscrètes Réactives (RDEM) pour calculer le front de combustion à grande vitesse représentépar une interface discontinue. Une approche anti-diffusive est ensuite couplée avec laRDEM afin de précisément simuler des interfaces réactives. La robustesse et l’efficacité decette approche en calculant tant des interfaces multiphasiques que des écoulements réactifssont à la fois améliorées grâce à la méthode ici proposée : upwind downwind-controlled splitting(UDCS). UDCS est capable de résoudre précisément des interfaces avec les maillagesnon-structurés multidimensionnels, y compris des fronts réactifs de détonation et de déflagration. / When numerically investigating multiphase phenomena during severe accidents in a reactorsystem, characteristic lengths of the multi-fluid zone (non-reactive and reactive) are foundto be much smaller than the volume of the reactor containment, which makes the directmodeling of the configuration hardly achievable. Alternatively, we propose to consider thephysical multiphase mixture zone as an infinitely thin interface. Then, the reactive Riemannsolver is inserted into the Reactive Discrete Equations Method (RDEM) to compute highspeed combustion waves represented by discontinuous interfaces. An anti-diffusive approachis also coupled with RDEM to accurately simulate reactive interfaces. Increased robustnessand efficiency when computing both multiphase interfaces and reacting flows are achievedthanks to an original upwind downwind-controlled splitting method (UDCS). UDCS is capableof accurately solving interfaces on multi-dimensional unstructured meshes, includingreacting fronts for both deflagration and detonation configurations.
|
326 |
Abordagens do tipo livre de jacobiana na simulação do escoamento de fluidos compressíveis em meios porosos / Abordagens do tipo livre de jacobiana na simulação do escoamento de fluidos compressíveis em meios porosos / Study of a Jacobian-free approach in the simulation of compressible fluid flows in porous media using a derivative-free spectral method / Study of a Jacobian-free approach in the simulation of compressible fluid flows in porous media using a derivative-free spectral methodGisiane Santos Simão Ferreira 30 September 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos. / The development of Jacobian-free software for solving problems formulated by nonlinear partial differential equations is of increasing interest to simulate practical engineering processes. This work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation of flows in porous media. The model considered here is the one employed to describe the displacement of miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid mixture varies exponentially with the pressure. The spectral algorithm used is a modern method for solving large-scale nonlinear systems, which does not solve linear systems, nor use any explicit information associated with the Jacobin matrix, being a Jacobian-free approach. Two dimensional problems are presented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable and efficient method for simulation of compressible flows in porous media.
|
327 |
Development of a high-order residual distribution method for Navier-Stokes and RANS equations / Schémas d'ordre élevé distribuant le résidu pour la résolution des équations de Navier-Stokes et Navier-Stokes moyennées (RANS)De Santis, Dante 03 December 2013 (has links)
Cette thèse présente la construction de schémas distribuant le résidu (RD) d'ordre très élevés, pour la discrétisation d'équations d'advection-diffusion multidimensionnelles et stationnaires sur maillages non structurés. Des schémas linéaires ainsi que des schémas non linéaires sont considérés. Une approximation de la solution polynomiale par morceaux et continue sur chaque élément est adoptée, de plus une procédure de reconstruction du gradient que celle de la solution numérique est utilisée afin d'avoir une représentation continue de la solution numérique et de son gradient. Il est montré que le gradient doit être reconstruit avec la même précision de la solution, sans quoi la précision formel du schéma numérique est perdue dans les cas où les effets de diffusion prévalent sur les effets d'advection, et aussi quand l'advection et la diffusion sont également importants. Ensuite, la méthode est étendue à des systèmes d'équations, en particulier aux équations de Navier-Stokes et aux équations RANS. La précision, l'efficacité et la robustesse du solveur RD implicite sont démontrées sur plusieurs cas tests. / The construction of compact high-order Residual Distribution schemes for the discretizationof steady multidimensional advection-diffusion problems on unstructuredgrids is presented. Linear and non-linear scheme are considered. A piecewise continuouspolynomial approximation of the solution is adopted and a gradient reconstructionprocedure is used in order to have a continuous representation of both thenumerical solution and its gradient. It is shown that the gradient must be reconstructedwith the same accuracy of the solution, otherwise the formal accuracy ofthe numerical scheme is lost in applications in which diffusive effects prevail overthe advective ones, and when advection and diffusion are equally important. Thenthe method is extended to systems of equations, with particular emphasis on theNavier-Stokes and RANS equations. The accuracy, efficiency, and robustness of theimplicit RD solver is demonstrated using a variety of challenging aerodynamic testproblems.
|
328 |
A method of hp-adaptation for Residual Distribution schemes / Construction d’une méthode hp-adaptative pour les schémas aux Résidus DistribuésViville, Quentin 22 November 2016 (has links)
Cette thèse présente la construction d’un schéma aux Résidus Distribués p-adaptatif pour la discrétisation des équations d’Euler ainsi qu’un schéma aux Résidus Distribués hp-adaptatif pour les équations de Navier- Stokes pénalisées. On rappelle tout d’abord les équations d’Euler et de Navier-Stokes ainsi que leurs versions non dimensionnelles. Les définitions et propriétés de base des schémas aux Résidus Distribués sont ensuite présentées. On décrit alors la construction d’un schéma aux Résidus Distribués p-adaptatif pour les équations d’Euler. La construction du schéma p-adaptatif est basée sur la possibilité d’exprimer le résidu total d’un élément K de degré k (au sens où l’élément fini (K; P; Sigma ) est un élément fini de degré k) comme une somme pondérée des résidus totaux de ses sous-éléments de degré 1. La solution discrète ainsi obtenue est en général discontinue à l’interface entre un élément subdivisé et un élément non subdivisé. Ceci contredit l’hypothèse de continuité de la solution qui est utilisée pour démontrer le théorème de Lax-Wendroff discret pour les schémas aux Résidus Distribués. Cependant, on montre que cette hypothèse peut être assouplie. La conséquence pratique est que si l’on emploie des quadratures particulières dans l’implémentation numérique, on peut quand même démontrer le théorème de Lax-Wendroff discret, ce qui garantit la convergence du schéma numérique vers une solution faible des équations d’origine. Les formules qui permettent d’exprimer le résidu total comme une somme pondérée des résidus totaux des sous-éléments sont à la base de la méthode de p-adaptation présentée ici. Dans le cas quadratique, la formule est obtenue avec les classiques fonctions de base de Lagrange en dimension deux et avec des fonctions de base de Bézier en dimension trois. Ces deux formules sont ensuite généralisées à des degrés polynomiaux quelconques en dimension deux et trois avec des fonctions de base de Bézier. Dans la deuxième partie de la thèse, on présente l’application du schéma p-adaptatif aux équations pénalisées de Navier-Stokes avec adaptation de maillage anisotrope. . En pratique, on combine le schéma p-adaptatif avec la méthode IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes). La méthode IBM-LS-AUM permet d’imposer les conditions aux bords grâce à la méthode de pénalisation et l’adaptation anisotrope du maillage à la solution numérique et à la level-set augmente la précision de la solution et de la représentation de la surface. Une fois la méthode IBM-LS-AUM combinée avec le schéma p-adaptatif, il est alors possible d’utiliser des éléments d’ordre élevés en-dehors de la zone où la pénalisation est appliquée. La méthode est robuste comme le montrent les diverses expérimentations numériques à des vitesses faibles à élevées et à différents nombres de Reynolds. / This thesis presents the construction of a p-adaptive Residual Distribution scheme for the steady Euler equations and a hp-adaptive Residual Distribution scheme for the steady penalized Navier-Stokes equations in dimension two and three. The Euler and Navier-Stokes equations are recalled along with their non dimensional versions. The basis definitions and properties of the steady Residual Distribution schemes are presented. Then, the construction of a p-adaptive Residual Distribution scheme for the Euler equations is considered. The construction of the p-adaptive scheme is based upon the expression of the total residual of an element of a given degree k (in the Finite Element sense) into the total residuals of its linear sub-elements. The discrete solution obtained with the p-adaptive scheme is then a one degree polynomial in the divided elements and a k-th degree polynomial in the undivided ones. Therefore, the discrete solution is in general discontinuous at the interface between a divided element and an undivided one. This is in apparent contradiction with the continuity assumption used in general to demonstrate the discrete Lax-Wendroff theorem for Residual Distribution schemes. However, as we show in this work, this constrain can be relaxed. The consequence is that if special quadrature formulas are employed in the numerical implementation, the discrete Lax-Wendroff theorem can still be proved, which guaranties the convergence of the p-adaptive scheme to a weak solution of the governing equations. The formulas that express the total residual into the combination of the total residuals of the sub-elements are central to the method. In dimension two, the formula is obtained with the classical Lagrange basis in the quadratic case and with the Bézier basis in dimension three. These two formulas are then generalized to arbitrary polynomial degrees in dimension two and three with a Bézier basis. In the second part of the thesis the application of the p-adaptive scheme to the penalized Navier-Stokes equations with anisotropic mesh adaptation is presented. In practice, the p-adaptive scheme is used with the IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes) method. The IBM-LS-AUM allows to impose the boundary conditions with the penalization method and the mesh adaptation to the solution and to the level-set increases the accuracy of the representation of the surface and the solution around walls. When the IBM-LSAUM is combined with the p-adaptive scheme, it is possible to use high-order elements outside the zone where the penalization is applied. The method is robust as shown by the numerical applications at low to large Mach numbers and at different Reynolds in dimension two and three.
|
329 |
An artificial compressibility analogy approach for compressible ideal MHD: application to space weather simulationYalim, Mehmet S. 05 December 2008 (has links)
Ideal magnetohydrodynamics (MHD) simulations are known to have problems in satisfying the solenoidal constraint (i.e. the divergence of magnetic field should be equal to zero, $<p>ablacdotvec{B} = 0$). The simulations become unstable unless specific measures have been taken.<p><p>In this thesis, a solenoidal constraint satisfying technique that allows discrete satisfaction of the solenoidal constraint up to the machine accuracy is presented and validated with a variety of test cases. Due to its inspiration from Chorin's artificial compressibility method developed for incompressible CFD applications, the technique was named as \ / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
330 |
Desenvolvimento e teste de esquemas \"upwind\" de alta resolução e suas aplicações em escoamentos incompressíveis com superfícies livres / Development and testing of high-resolution upwind schemes and their applications in incompressible free surface flowsRafael Alves Bonfim de Queiroz 18 March 2009 (has links)
Neste trabalho são apresentados os resultados do desenvolvimento e teste de esquemas upwind de alta resolução para o controle da difusão numérica em leis de conservação gerais e problemas em dinâmica dos fluidos. Em particular, são derivados dois novos esquemas: o ALUS (Adaptive Linear Upwind Scheme) e o TOPUS (Third-Order Polynomial Upwind Scheme). Esses esquemas são testados no transporte de escalares, em equações 1D tipo convecção-difusão, em sistemas hiperbólicos 1D, nas equações de Euler 2D da dinâmica dos gases e nas equações de Navier-Stokes incompressíveis 2D/3D. Os esquemas são então associados a uma modelagem algébrica não linear para a simulação de problemas de escoamentos incompressíveis turbulentos 2D com/sem superfícies livres / In this work, results of the development and testing of high-resolution upwind schemes for controlling of the numerical diffusion for general conservation laws and fluid dynamics problems are presented. In particular, two new high-resolution upwind schemes are derived, namely, the ALUS (Adaptive Linear Upwind Scheme) and the TOPUS (Third-Order Polynomial Upwind Scheme). These schemes are tested in scalar transport, 1D convection-diffusion equations, 1D hyperbolic systems, 2D Euler equations of the gas dynamics, and in 2D/3D incompressible Navier-Stokes equations. The schemes are then combined with a nonlinear Reynolds stress algebraic equation model for the simulation of 2D incompressible turbulent flows with/without free surfaces
|
Page generated in 0.0413 seconds