• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origami Cylinders

Bös, Friedrich 06 July 2017 (has links)
No description available.
2

Design, Fabrication, and Testing of Mechanical Hinges with Snap-Fit Locking Mechanisms in Rigid Origami Structures

Scanlon, Colby James 01 June 2022 (has links) (PDF)
The ancient art of ‘origami’ has recently become the source of inspiration for engineers to create structures that can unfold from a compact state to a fully deployed one. For instance, researchers have currently adopted origami designs in various engineering disciplines, including aerospace engineering, robotics, biomedical engineering, and architecture. In particular, architects have been interested in designing origami-inspired rigid walled structures that can be deployed as disaster-relief shelters. This type of design has three main advantages: transportability, constructability, and rigidity. Although there has been increased interests in deployable structures, limited research has been conducted on evaluating their structural performance, specifically the mechanical performance of the hinges that allow for the rotation of the rigid panels. To address the limitation, this thesis proposes a novel design of hinge connections for rigid origami structures. The hinges utilize snap fit connections to allow for the structure to achieve and maintain a locked state once unfolded without the need for any additional connections. Prototypes of the hinge design were fabricated using a 3D printer and their flexural strength was experimentally and computationally studied. It was concluded that the design could resist typical flexural loads for residential structures, and future research should be performed to minimize deflection.
3

Design Methods For Planar And Spatial Deployable Structures

Kiper, Gokhan 01 August 2011 (has links) (PDF)
This thesis study addresses the problem of overconstraint via introduction of conformal polyhedral linkages comprising revolute joints only and investigation of special geometric properties for the mobility of such overconstrained linkages. These linkages are of particular interest as deployable structures. First, planar case is issued and conditions for assembling irregular conformal polygonal linkages composed of regular and angulated scissor elements are derived. These planar assemblies are implemented into faces of polyhedral shapes and radially intersecting planes to obtain two different kind of polyhedral linkages. Rest of the thesis work relates to spatial linkages. Identical isosceles Bennett loops are assembled to obtain regular polygonal linkages and many such linkages are assembled to form polyhedral linkages. Then, Fulleroid-like linkages are presented. After these seemingly independent linkage types, Jitterbug-like linkages are introduced. Based on some observations on present linkages in the literature a definition for Jitterbug-like linkages is given first, and then a set of critical properties of these linkages are revealed. This special type of polyhedral linkages is further classified as being homothetic and non-homothetic, and geometric conditions to obtain mobile homothetic Jitterbug-like polyhedral linkages are investigated. Homohedral linkages, linkages with polyhedral supports with 3- and 4-valent vertices only, tangential polyhedral linkages are detailed as special cases and the degenerate case where all faces are coplanar is discussed. Two types of modifications on Jitterbug-like linkages are presented by addition of links on the faces and radial planes of Jitterbug-like linkages. Finally, a special class of Jitterbug-like linkages - modified Wren platforms are introduced as potential deployable structures.
4

Analogy between equilibrium of structures and compatibility of mechanisms

Lengyel, András January 2002 (has links)
Planar bar-and-joint mechanisms with one degree-of-freedom are widely used in deployable structures and machines. Such mechanisms are designed to undergo a specific motion, which can be described mathematically by plotting out the compatibility conditions, resulting in a curve called compatibility path. It has been observed that compatibility paths can develop singularities similar to that of equilibrium paths of elastic structures. This dissertation studies singularities occurring in compatibility paths with the aid of knowledge in the theory of structural stability. An analogy is set up between the equilibrium path of elastic structures and the compatibility path of mechanisms with a single degree-of-freedom incorporating the different types of bifurcation, effects of imperfections and detection of singularities. It is shown that the fundamentally distinct critical points such as limit points and bifurcation points can also appear in compatibility path. Methods used to singularities for compatibility conditions of mechanisms and equilibrium of structures are unified so that they can be used for both cases. A formulation of potential energy for mechanisms is also proposed in analogy with the potential energy function used in structural analysis. Further analysis of the mechanisms is carried out to demonstrate that singularities of compatibility paths can also be dealt with by the elementary catastrophe theory similar to the stability theory. A relationship is established between the mathematical formulation of different compatibility bifurcations and the canonical forms of catastrophe types. Examples of mechanisms demonstrating the existence of cuspoids of the compatibility conditions are given. An overall classification of the compatibility paths is also proposed.
5

A novel foldable stent graft

Kuribayashi, Kaori January 2004 (has links)
This dissertation concerns the structural design of medical stent grafts. A new type of an innovative stent graft has been developed. Unlike the conventional stent grafts which consist of a wire mesh and a covering membrane, the proposed stent graft can be made from a single folded sheet of material. Firstly, a detailed symmetric design of a foldable cylindrical tube for the new stent graft has been presented. Folding is achieved by dividing the structure into a series of identical elements with hill and valley folds as in origami (Japanese art of paper folding). The folding patterns allow the stent graft to be folded and expanded both radially and longitudinally. The relationships among the design of the elements, the number of elements in the circumferential and longitudinal directions and the folded dimensions of the stent graft have been derived. It has been found that compact folding in the radial direction can be achieved by increasing the number of circumferential elements. A geometric mismatch during deployment has also been identified. The elements have to deform when the structure is expanded. Optimum designs which minimise the deformation have been found. Secondly, a new stent graft with helical folds has also been designed to improve radial strength and ease the deployment process. Helical folds are introduced by adjusting the joining position of the two edges of a sheet that had been symmetrically jointed in the symmetric design. The relationships among the number of elements in one complete circumference of a helix, the helical angle and the radius of the helical type stent graft have been established. The locations for the helical folds are optimised for easy folding by considering both geometric aspects of folding and the buckling patterns of a thin-walled tube under torsion, which are found analytically. Thirdly, using numerical analysis of the finite element method (FEM) the strain level and overall deformation of the stent graft during deployment has been calculated. Finally, the stent graft has been manufactured to verify the concept. A number of prototypes of the stent graft, which are the same size as standard oesophageal and aortal stent grafts, have been produced successfully using the same materials as current stent grafts of stainless steel and shape memory alloy (SMA) sheets. The patterns of folds on the materials are produced by photochemical etching. It has also been demonstrated that the SMA stent grafts self-expand smoothly and gradually by a near body temperature.
6

Polynomial continuation in the design of deployable structures

Viquerat, Andrew David January 2012 (has links)
Polynomial continuation, a branch of numerical continuation, has been applied to several primary problems in kinematic geometry. The objective of the research presented in this document was to explore the possible extensions of the application of polynomial continuation, especially in the field of deployable structure design. The power of polynomial continuation as a design tool lies in its ability to find all solutions of a system of polynomial equations (even positive dimensional solution sets). A linkage design problem posed in polynomial form can be made to yield every possible feasible outcome, many of which may never otherwise have been found. Methods of polynomial continuation based design are illustrated here by way of various examples. In particular, the types of deployable structures which form planar rings, or frames, in their deployed configurations are used as design cases. Polynomial continuation is shown to be a powerful component of an equation-based design process. A polyhedral homotopy method, particularly suited to solving problems in kinematics, was synthesised from several researchers' published continuation techniques, and augmented with modern, freely available mathematical computing algorithms. Special adaptations were made in the areas of level-k subface identification, lifting value balancing, and path-following. Techniques of forming closure/compatibility equations by direct use of symmetry, or by use of transfer matrices to enforce loop closure, were developed as appropriate for each example. The geometry of a plane symmetric (rectangular) 6R foldable frame was examined and classified in terms of Denavit-Hartenberg Parameters. Its design parameters were then grouped into feasible and non-feasible regions, before continuation was used as a design tool; generating the design parameters required to build a foldable frame which meets certain configurational specifications. Two further deployable ring/frame classes were then used as design cases: (a) rings which form (planar) regular polygons when deployed, and (b) rings which are doubly plane symmetric and planar when deployed. The governing equations used in the continuation design process are based on symmetry compatibility and transfer matrices respectively. Finally, the 6, 7 and 8-link versions of N-loops were subjected to a witness set analysis, illustrating the way in which continuation can reveal the nature of the mobility of an unknown linkage. Key features of the results are that polynomial continuation was able to provide complete sets of feasible options to a number of practical design problems, and also to reveal the nature of the mobility of a real overconstrained linkage.
7

Development of an Origami Inspired Composite Deployable Structure Utilizing Compliant Joints as Surrogate Folds

Smith, Samuel Porter 15 September 2021 (has links) (PDF)
This work presents the design and construction of a self-deployable, self-stiffening,and retractable (SDSR) space array from carbon fiber reinforced polymers (CFRP’s) and a working prototype is demonstrated. The effort required developing principles for the design of high-strain composite flexural joints and their integration into angled composite panels. Designing LET arrays in angled panels is explored. Analysis of simple composite LET joints is presented for two degrees of freedom. Validation of the composite LET modeling is sought through numerical methods and empirical testing. Testing of several composite LET joint specimens is conducted and the results are reported. Results indicate that (while not as compact as their isotropic material counterparts) composite laminates can successfully use LET joints as surrogate folds.
8

Ne Design Methods For Polyhedral Linkages

Kiper, Gokhan 01 September 2006 (has links) (PDF)
This thesis analyses the existing types of polyhedral linkages and presents new linkage types for resizing polyhedral shapes. First, the transformation characteristics, most specifically, magnification performances of existing polyhedral linkages are given. Then, methods for synthesizing single degree-of-freedom planar polygonal linkages are described. The polygonal linkages synthesized are used as faces of polyhedral linkages. Next, the derivation of some of the existing linkages using the method given is presented. Finally, some designs of cover panels for the linkages are given. The Cardan Motion is the key point in both analyses of existing linkages and synthesis of new linkages.
9

Compliant shell mechanisms

Seereeram, Videsh Ramjas January 2012 (has links)
No description available.
10

Thin-walled composite deployable booms with tape-spring hinges

Mallikarachchi, H. M. Yasitha Chinthaka January 2011 (has links)
Deployable structures made from ultra-thin composite materials can be folded elastically and are able to self-deploy by releasing the stored strain energy. Their lightness, low cost due to smaller number of components, and friction insensitive behaviour are key attractions for space applications. This dissertation presents a design methodology for lightweight composite booms with multiple tape-spring hinges. The whole process of folding and deployment of the tape-spring hinges under both quasi-static and dynamic loading has been captured in detail through finite element simulations, starting from a micro-mechanical model of the laminate based on the measured geometry and elastic properties of the woven tows. A stress-resultant based six-dimensional failure criterion has been developed for checking if the structure would be damaged. A detailed study of the quasi-static folding and deployment of a tape-spring hinge made from a two-ply plain-weave laminate of carbon-fibre reinforced plastic has been carried out. A particular version of this hinge was constructed and its moment-rotation profile during quasi-static deployment was measured. Folding and deployment simulations of the tape-spring hinge were carried out with the commercial finite element package Abaqus/Explicit, starting from the as-built, unstrained structure. The folding simulation includes the effects of pinching the hinge in the middle to reduce the peak moment required to fold it. The deployment simulation fully captures both the steady-state moment part of the deployment and the final snap back to the deployed configuration. An alternative simulation without pinching the hinge provides an estimate of the maximum moment that could be carried by the hinge during operation. This moment is about double the snap-back moment for the particular hinge design that was considered. The dynamic deployment of a tape-spring hinge boom has been studied both experimentally and by means of detailed finite-element simulations. It has been shown that the deployment of the boom can be divided into three phases: deployment; latching, which may involve buckling of the tape springs and large rotations of the boom; and vibration of the boom in the latched configuration. The second phase is the most critical as the boom can fold backwards and hence interfere with other spacecraft components. A geometric optimisation study was carried out by parameterising the slot geometry in terms of slot length, width and end circle diameter. The stress-resultant based failure criterion was then used to analyse the safety of the structure. The optimisation study was focused on finding a hinge design that can be folded 180 degrees with the shortest possible slot length. Simulations have shown that the strains can be significantly reduced by allowing the end cross-sections to deform freely. Based on the simulations a failure-critical design and a failure-safe design were selected and experimentally verified. The failure-safe optimised design is six times stiffer in torsion, twice stiffer axially and stores two and a half times more strain energy than the previously considered design. Finally, an example of designing a 1 m long self-deployable boom that could be folded around a spacecraft has been presented. The safety of this two-hinge boom has been evaluated during both stowage and dynamic deployment. A safe design that latches without any overshoot was selected and validated by a dynamic deployment experiment.

Page generated in 0.0306 seconds