• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of ionic boron amphiphilic diblock copolymers and pyridylborate ligands for transition metal complexes

Cui, Chengzhong, January 2010 (has links)
Thesis (Ph. D.)--Rutgers University, 2010. / "Graduate Program in Chemistry." Includes bibliographical references.
2

Nonequilibrium Dynamics in Symmetric Diblock Copolymer Systems

Peters, Robert 11 1900 (has links)
In this dissertation, experiments are described which elucidate how the ordering of symmetric diblock copolymers affects the dynamics within various geometries. In all studies presented herein, experimental techniques are used to probe the dynamics of symmetric diblock copolymer systems as they progress toward equilibrium and to study the role that nanoscale ordering plays in these processes. In the majority of work presented herein, experiments were performed on symmetric diblock copolymer thin films. This work focuses on the effect of various sample preparation techniques on the equilibration kinetics of lamellar forming films. Films are prepared with varying thicknesses in the homogeneous, disordered state and annealed to form islands and holes as the surface decomposes to form commensurate thicknesses. Both nucleated and spinodal growth patterns were observed for this surface decomposition dependent on the initial thickness and intermediate morphologies formed upon ordering. We also prepare equilibrium commensurate films and induce a step change in surface interactions, switching from asymmetric to symmetric wetting boundaries. Upon equilibration, a perforated lamella forms at the free surface to mediate the order-order transition, inducing hole growth with a ramified shape. In the final project, the effect that lamellar order has on dynamics is studied within unstable polymer melt bridges. Liquid bridges are what is formed when a droplet is stretched between two surfaces, like spit between two fingers. Disordered diblock bridges are shown to evolve similar to their homopolymer counterparts. However, ordered diblock copolymer exhibits an enhanced stability with an inhibition of flow proposed to be induced by the isotropic orientational order within the bridge. As well, shear thinning is observed that is believed to be caused by an alignment of ordered domains along the bridge axis due to shear strain rates, providing pathways for flow of diblock copolymer out of the unstable bridge. / Thesis / Doctor of Philosophy (PhD)
3

The Copolymer blending method : a new approach for targeted assembly of micellar nanoparticles

Wright, D.B., Patterson, J.P., Pitto-Barry, Anaïs, Lu, A., Kirby, N., Gianneschi, N.C., Chassenieux, C., Colombani, O., O'Reilly, R.K. 31 August 2015 (has links)
Yes / Polymer self-assembly in solution is a simple strategy for the preparation of elegant yet complex nanomaterials. However, exhaustive synthesis of the copolymer synthons is often required to access specific assemblies. In this work we show that the blending of just two diblock copolymers with identical block lengths but varying hydrophobic monomer incorporations can be used to access a range of assemblies of intermediate hydrophobic composition. Indeed, the nanostructures produced from blending are identical to those formed with the directly synthesized copolymer of the same composition. This new approach presents researchers with a more efficient and accessible methodology to access precision self-assembled nanostructures, and we highlight its potential by applying it to a demonstrator catalytically active system. / European Science Foundation (ESF), Engineering and Physical Sciences Research Council (EPSRC), United States. Air Force. Office of Scientific Research (AFOSR)
4

Block Copolymer-Templated Mesoporous Materials obtained by Evaporation-Induced Self Assembly

Lin, Yu-De 26 July 2011 (has links)
A series of immiscible crystalline-crystalline diblock copolymers, poly(ethylene oxide)-b-(£`-caprolactone) (PEO-b-PCL), were synthesized through ring-opening polymerization and then blended with phenolic resin. FT-IR analyses provide that the ether group of PEO is a stronger hydrogen bond acceptor than the carbonyl group of PCL with the hydroxyl group of phenolic. Phenolic after curing with hexamethylenetetramine (HMTA) results in the excluded and confined PCL phase based on differential scanning calorimeter (DSC) analyses. This effect leads to the formation of a variety of composition-dependent nanostructures, including disorder, gyroid and short cylinder. The self-organized mesoporous phenolic resin was only found at 40~60 wt% phenolic content by intriguing balance of the contents of phenolic, PEO, and PCL. In addition, the mesoporous structure was destroyed with the increasing the ratio of PCL to PEO in block copolymers by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses. In addition, the large and long-range order of bicontinuous gyroid-type mesoporous carbon was obtained from mesoporous gyroid phenolic resin calcined at 800 ¢XC under nitrogen.
5

Fully conjugated diblock copolymers for photovoltaic devices

Mulherin, Rhiannon Clare January 2012 (has links)
No description available.
6

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
7

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
8

Block Copolymers via Reverse Addition-Fragmentation Chain Transfer Polymerization as a Viable Resin for Packaging Coatings

Lascu, Claudia M. 26 June 2015 (has links)
No description available.
9

Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties

Garnier, Sébastien January 2005 (has links)
The Reversible Addition Fragmentation Chain Transfer (RAFT) process using the new RAFT agent benzyldithiophenyl acetate is shown to be a powerful polymerization tool to synthesize novel well-defined amphiphilic diblock copolymers composed of the constant hydrophobic block poly(butyl acrylate) and of 6 different hydrophilic blocks with various polarities, namely a series of non-ionic, non-ionic comb-like, anionic and cationic hydrophilic blocks. The controlled character of the polymerizations was supported by the linear increase of the molar masses with conversion, monomodal molar mass distributions with low polydispersities and high degrees of end-group functionalization. <br><br> The new macro-surfactants form micelles in water, whose size and geometry strongly depend on their composition, according to dynamic and static light scattering measurements. The micellization is shown to be thermodynamically favored, due to the high incompatibility of the blocks as indicated by thermal analysis of the block copolymers in bulk. The thermodynamic state in solution is found to be in the strong or super strong segregation limit. Nevertheless, due to the low glass transition temperature of the core-forming block, unimer exchange occurs between the micelles. Despite the dynamic character of the polymeric micellar systems, the aggregation behavior is strongly dependent on the history of the sample, i.e., on the preparation conditions. The aqueous micelles exhibit high stability upon temperature cycles, except for an irreversibly precipitating block copolymer containing a hydrophilic block exhibiting a lower critical solution temperature (LCST). Their exceptional stability upon dilution indicates very low critical micelle concentrations (CMC) (below 4∙10<sup>-4</sup> g∙L<sup>-1</sup>). All non-ionic copolymers with sufficiently long solvophobic blocks aggregated into direct micelles in DMSO, too. Additionally, a new low-toxic highly hydrophilic sulfoxide block enables the formation of inverse micelles in organic solvents. <br><br> The high potential of the new polymeric surfactants for many applications is demonstrated, in comparison to reference surfactants. The diblock copolymers are weakly surface-active, as indicated by the graduate decrease of the surface tension of their aqueous solutions with increasing concentration. No CMC could be detected. Their surface properties at the air/water interface confer anti-foaming properties. The macro-surfactants synthesized are surface-active at the interface between two liquid phases, too, since they are able to stabilize emulsions. The polymeric micelles are shown to exhibit a high ability to solubilize hydrophobic substances in water. / Amphiphile sind Moleküle, die aus einem hydrophilen und einem hydrophoben Molekülteil aufgebaut sind. Beispiele für Amphiphile sind Tenside, deren makromolekulares Pendant amphiphile Block-Copolymere sind, die häufig auch als Makro-Tenside bezeichnet sind. Ihre Lösungseigenschaften in einem selektiven Lösungsmittel, i.e., ein für einen Block gutes und für den anderen schlechtes Lösungsmittel, sind analog zu denen von Tensiden. Die Unverträglichkeit der Polymersegmente führt zu einer von hydrophoben Wechselwirkungen getriebenen Mikrophasenseparation, d.h. zur Selbstorganisation der amphiphilen Makromoleküle zu Mizellen unterschiedlichster Form, während die kovalente Bindung zwischen den Blöcken eine Makrophasenseparation verhindert. Aufgrund ihres besonderen strukturellen Aufbaus adsorbieren Makro-Tenside an Grenzflächen, was zahlreiche Anwendungen, z.B. zur (elektro)sterischen Stabilisierung von Emulsionen und Dispersionen findet. <br><br> Die vorliegende Arbeit demonstriert, dass die neuen kontrollierten radikalischen Polymerisationen wie die RAFT-Methode („Reversible Addition Fragmentation Chain Transfer“) für die Synthese von neuen wohldefinierten amphiphilen Diblock-Copolymerstrukturen sehr gut geeignet sind. Eine Reihe von neuen amphiphilen Diblock-Copolymeren wurde mittels RAFT synthetisiert, mit einem konstanten hydrophoben Block und verschiedenen hydrophilen Blöcken unterschiedlichster Polaritäten. Die engen Molmassenverteilungen und der lineare Aufstieg der Molmassen mit dem Umsatz belegen den kontrollierten Charakter der Polymerisation. <br><br> Die thermodynamisch favorisierte Selbstorganisation der synthetisierten Blockcopolymere in Wasser führt zur Bildung von Mizellen, deren Eigenschaften aber von der Präparationsmethode stark abhängig sind. Korrelationen zwischen den Mizelleigenschaften und der Blockcopolymerstruktur zeigen, dass die Mizellgröße vor allem von der Länge des hydrophoben Blocks kontrolliert wird, wohindagegen die Natur des hydrophilen Blocks der entscheidende Faktor für die Mizellgeometrie ist. Die gebildeten Mizellen sind besonders stabil gegenüber Verdünnung und Temperaturzyklen, was ein großer Vorteil für eventuelle Anwendungen ist. Wegen der niedrigen Glasübergangstemperatur des hydrophoben Blocks findet ein Austausch von Makromolekülen zwischen den Mizellen statt, d.h. es handelt sich um dynamische Mizellsysteme. <br><br> Das Potential der neuen Makrotenside für Anwendungen wurde untersucht. Die Polymermizellen zeigen eine hohe Kapazität wasserunlösliche Substanzen in Wasser zu solubilisieren. Die Blockcopolymere sind grenzflächenaktiv, d.h. sie adsorbieren an Wasser / Luft oder Wasser / Öl Grenzflächen. Entsprechend sind die Blockcopolymere in der Lage, Emulsionen zu stabilisieren oder als Antischaumsubstanzen zu wirken.
10

Selective Interfacial Interaction between Diblock Copolymers and Cobalt Nanoparticles

David, Kasi 20 November 2006 (has links)
In order to optimize the synthesis of metal nanoparticle-polymer systems, there are certain processes which must be understood. Perhaps the most important one is the selective interfacial interaction between the block copolymer and the growing metal nanoparticles. To investigate this interaction, four different approaches were taken. The first approach looked at the strength of interaction between the competing blocks of the copolymer and the metal nanoparticles surface. The second approach looked at the effect of polymer architecture on the metal nanoclusters. The third approach looked at the polymer composition and solvent effects on the phase behavior of the metal nanocluster-block copolymer nanocomposite. Finally, the influence of the metal precursor on the rate of the decomposition was examined. It was found that adsorbed layers of PS on the cobalt nanoparticles are completely displaced by PMMA when the solvent is a common good solvent. An adsorbed layer of only PMMA is also obtained through competitive adsorption from a common good solvent. However, in a selective solvent that is poor for PS, sequential adsorption leads to the formation of mixed layers. In homopolymer solutions, the cluster size reaches a minimum at a finite chain MW. In the case of diblock copolymers, the only parameter (for a fixed copolymer concentration) controlling the cluster size in suspensions of di-block copolymers is the molecular weight of one block, in this case PMMA, and is indifferent to other parameters including the molecular weight of the other block (PS) or the solvent quality. It was also found that the spatial distribution of the metal clusters synthesized in-situ coincided with the morphology dictated by thermodynamically-driven microdomain structure of the block copolymer. Moreover, the overall final morphology of the nanocomposite is locked into place while in solution, and fast solvent evaporation does not cause this morphology to change. Finally, results showed that the rate of nanocomposite synthesis occurred faster in the PS suspensions compared to PMMA, indicating that chemical bonds between PMMA and the cobalt nanoclusters slowed the thermal decomposition of the metal precursor. So the PMMA chains provided sites for nucleation, but did not necessarily aid particle growth.

Page generated in 0.0315 seconds