• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 25
  • 11
  • 8
  • 8
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 150
  • 38
  • 19
  • 18
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamically reconfigurable system

Edwards, Nigel John January 1989 (has links)
No description available.
2

Open implementation and flexibility in CSCW toolkits

Dourish, James Paul January 1996 (has links)
No description available.
3

AnalyzeThis: An Analysis Workflow-Aware Storage System

Sim, Hyogi 13 January 2015 (has links)
Supercomputing application simulations on hundreds of thousands of cores produce vast amounts of data that need to be analyzed on smaller-scale clusters to glean insights. The process is referred to as an end-to-end workflow. Extant workflow systems are stymied by the storage wall, resulting from both the disk-based parallel file system (PFS) failing to keep pace with the compute and memory subsystems as well as the inefficiencies in end-to-end workflow processing. In the post-petaflop era, supercomputers are provisioned with flash devices, as an intermediary between compute nodes and the PFS, enabling novel paradigms not just for expediting I/O, but also for the in-situ analysis of the simulation output data on the flash device. An array of such active flash elements allows us to fundamentally rethink the way data analysis workflows interact with storage systems. By blending the flash storage array and data analysis together in a seamless fashion, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage system—active flash fabric, analysis object abstraction layer, scheduling layer within the storage, and an easy-to-use file system interface—thereby elevating data analyses as first-class citizens. Together, these concepts transform AnalyzeThis into a potent analytics-aware appliance. / Master of Science
4

Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems

Wang, Xianbing, Teo, Yong Meng, Cao, Jiannong 01 1900 (has links)
A fundamental problem of fault-tolerant distributed computing is for the reliable processes to reach a consensus. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, we prove using a straightforward bivalency argument that the lower bound for reaching uniform consensus is (f + 2)-rounds in the case of 0 < f ≤ t −2, and a new lower bound for early-stopping consensus is min (t + 1, f + 2)-rounds where 0 ≤ f ≤ t. Both proofs are simpler and more intuitive than the traditional methods such as backward induction. Our main contribution is that we solve the open problem of proving that bivalency can be applied to show the (f + 2)-rounds lower bound for synchronous uniform consensus. / Singapore-MIT Alliance (SMA)
5

An ownership-base message admission control mechanism for curbing spam

Geng, Hongxing 04 September 2007
Unsolicited e-mail has brought much annoyance to users, thus, making e-mail less reliable as a communication tool. This has happened because current email architecture has key limitations. For instance, while it allows senders to send as many messages as they want, it does not provide adequate capability to recipients to prevent unrestricted access to their mailbox. This research develops a new approach to equip recipients with ability to control access to their mailbox.<p>This thesis builds an ownership-based approach to control mailbox usage employing the CyberOrgs model. CyberOrgs is a model that provides facilities to control resources in multi-agent systems. We consider a mailbox to be a precious resource of its owner. Any access to the resource requires its owner's permission. Thus, we give recipients a capability to manage their valuable resource - mailbox. In our approach, message senders obtain a permission to send messages through negotiation. In this negotiation, a sender makes a proposal and the intended recipient evaluates the proposal according to their own policies. A sender's desired outcome of a negotiation is a contract, which conducts the subsequent communication between the sender and the recipient. Contracts help senders and recipients construct a long-term relationship.<p>Besides allowing individuals to control their mailbox, we consider groups, which represent organizations in human society, in order to allow organizations to manage their resources including mailboxes, message sending allowances, and contracts.<p>A prototype based on our approach is implemented. In the prototype, policies are separated from the mechanisms. Examples of policies are presented and a public policy interface is exposed to allow programmers to develop custom policies. Experimental results demonstrate that the system performance is policy-dependent. In other words, as long as policies are carefully designed, communication involving negotiation has minimal overhead compared to communication in which senders deliver messages to recipients directly.
6

An ownership-base message admission control mechanism for curbing spam

Geng, Hongxing 04 September 2007 (has links)
Unsolicited e-mail has brought much annoyance to users, thus, making e-mail less reliable as a communication tool. This has happened because current email architecture has key limitations. For instance, while it allows senders to send as many messages as they want, it does not provide adequate capability to recipients to prevent unrestricted access to their mailbox. This research develops a new approach to equip recipients with ability to control access to their mailbox.<p>This thesis builds an ownership-based approach to control mailbox usage employing the CyberOrgs model. CyberOrgs is a model that provides facilities to control resources in multi-agent systems. We consider a mailbox to be a precious resource of its owner. Any access to the resource requires its owner's permission. Thus, we give recipients a capability to manage their valuable resource - mailbox. In our approach, message senders obtain a permission to send messages through negotiation. In this negotiation, a sender makes a proposal and the intended recipient evaluates the proposal according to their own policies. A sender's desired outcome of a negotiation is a contract, which conducts the subsequent communication between the sender and the recipient. Contracts help senders and recipients construct a long-term relationship.<p>Besides allowing individuals to control their mailbox, we consider groups, which represent organizations in human society, in order to allow organizations to manage their resources including mailboxes, message sending allowances, and contracts.<p>A prototype based on our approach is implemented. In the prototype, policies are separated from the mechanisms. Examples of policies are presented and a public policy interface is exposed to allow programmers to develop custom policies. Experimental results demonstrate that the system performance is policy-dependent. In other words, as long as policies are carefully designed, communication involving negotiation has minimal overhead compared to communication in which senders deliver messages to recipients directly.
7

GRAPE : parallel graph query engine

Xu, Jingbo January 2017 (has links)
The need for graph computations is evident in a multitude of use cases. To support computations on large-scale graphs, several parallel systems have been developed. However, existing graph systems require users to recast algorithms into new models, which makes parallel graph computations as a privilege to experienced users only. Moreover, real world applications often require much more complex graph processing workflows than previously evaluated. In response to these challenges, the thesis presents GRAPE, a distributed graph computation system, shipped with various applications for social network analysis, social media marketing and functional dependencies on graphs. Firstly, the thesis presents the foundation of GRAPE. The principled approach of GRAPE is based on partial evaluation and incremental computation. Sequential graph algorithms can be plugged into GRAPE with minor changes, and get parallelized as a whole. The termination and correctness are guaranteed under a monotonic condition. Secondly, as an application on GRAPE, the thesis proposes graph-pattern association rules (GPARs) for social media marketing. GPARs help users discover regularities between entities in social graphs and identify potential customers by exploring social influence. The thesis studies the problem of discovering top-k diversified GPARs and the problem of identifying potential customers with GPARs. Although both are NP- hard, parallel scalable algorithms on GRAPE are developed, which guarantee a polynomial speedup over sequential algorithms with the increase of processors. Thirdly, the thesis proposes quantified graph patterns (QGPs), an extension of graph patterns by supporting simple counting quantifiers on edges. QGPs naturally express universal and existential quantification, numeric and ratio aggregates, as well as negation. The thesis proves that the matching problem of QGPs remains NP-complete in the absence of negation, and is DP-complete for general QGPs. In addition, the thesis introduces quantified graph association rules defined with QGPs, to identify potential customers in social media marketing. Finally, to address the issue of data consistency, the thesis proposes a class of functional dependencies for graphs, referred to as GFDs. GFDs capture both attribute-value dependencies and topological structures of entities. The satisfiability and implication problems for GFDs are studied and proved to be coNP-complete and NP-complete, respectively. The thesis also proves that the validation problem for GFDs is coNP- complete. The parallel algorithms developed on GRAPE verify that GFDs provide an effective approach to detecting inconsistencies in knowledge and social graphs.
8

A Database Supported Modeling Environment for Pandemic Planning and Course of Action Analysis

Ma, Yifei 24 June 2013 (has links)
Pandemics can significantly impact public health and society, for instance, the 2009 H1N1<br />and the 2003 SARS. In addition to analyzing the historic epidemic data, computational simulation of epidemic propagation processes and disease control strategies can help us understand the spatio-temporal dynamics of epidemics in the laboratory. Consequently, the public can be better prepared and the government can control future epidemic outbreaks more effectively. Recently, epidemic propagation simulation systems, which use high performance computing technology, have been proposed and developed to understand disease propagation processes. However, run-time infection situation assessment and intervention adjustment, two important steps in modeling disease propagation, are not well supported in these simulation systems. In addition, these simulation systems are computationally efficient in their simulations, but most of them have<br />limited capabilities in terms of modeling interventions in realistic scenarios.<br />In this dissertation, we focus on building a modeling and simulation environment for epidemic propagation and propagation control strategy. The objective of this work is to<br />design such a modeling environment that both supports the previously missing functions,<br />meanwhile, performs well in terms of the expected features such as modeling fidelity,<br />computational efficiency, modeling capability, etc. Our proposed methodologies to build<br />such a modeling environment are: 1) decoupled and co-evolving models for disease propagation, situation assessment, and propagation control strategy, and 2) assessing situations and simulating control strategies using relational databases. Our motivation for exploring these methodologies is as follows: 1) a decoupled and co-evolving model allows us to design modules for each function separately and makes this complex modeling system design simpler, and 2) simulating propagation control strategies using relational databases improves the modeling capability and human productivity of using this modeling environment. To evaluate our proposed methodologies, we have designed and built a loosely coupled and database supported epidemic modeling and simulation environment. With detailed experimental results and realistic case studies, we demonstrate that our modeling environment provides the missing functions and greatly enhances many expected features, such as modeling capability, without significantly sacrificing computational efficiency and scalability. / Ph. D.
9

A Distributed System Interface for a Flight Simulator

Zeitoun, Omar 11 1900 (has links)
The importance of flight training has been realized since the inception of manned flight. In this thesis, a project about the interfacing of hardware cockpit instruments with a flight simulation software over a distributed system is to be described. A TRC472 Flight Cockpit was to be used while linked with Presagis FlightSIM to fully simulate a Cessna 172 Skyhawk aircraft. The TRC 472 contains flight input gauges (Airspeed Indicator, RPM indicator... etc.), pilot control devices (Rudder, Yoke...etc.) and navigation systems (VOR,ADF...etc.) all connected to computer through separate USBs and identified as HID's (Human Interface Devices). These devices required real-time interaction with FlightSIM software; in total 21 devices communicating at the same time. The TRC472 Flight Cockpit and the FlightSIM software were to be running on a distributed system of computers and to be communicating together through Ethernet. Serialization was to be used for the data transfer across the connection link so objects can be reproduced seamlessly on the different computers. Some of the TRC472 devices were straight forward in writing and reading from, but some of them required some calibrations of raw I/O data and buffers. The project also required making plugins to overwrite and extend FlightSIM software to communicate with the TRC472 Flight Cockpit. The final product is to be a full fledged flight experience with complete environment and physics of the Cessna 172. / Thesis / Master of Applied Science (MASc)
10

Towards the Inference, Understanding, and Reasoning on Edge Devices

Ma, Guoqing 10 May 2023 (has links)
This thesis explores the potential of edge devices in three applications: indoor localization, urban traffic prediction, and multi-modal representation learning. For indoor localization, we propose a reliable data transmission network and robust data processing framework by visible light communications and machine learning to enhance the intelligence of smart buildings. The urban traffic prediction proposes a dynamic spatial and temporal origin-destination feature enhanced deep network with the graph convolutional network to collaboratively learn a low-dimensional representation for each region to predict in-traffic and out-traffic for every city region simultaneously. The multi-modal representation learning proposes using dynamic contexts to uniformly model visual and linguistic causalities, introducing a novel dynamic-contexts-based similarity metric that considers the correlation of potential causes and effects to measure the relevance among images. To enhance distributed training on edge devices, we introduced a new system called Distributed Artificial Intelligence Over-the-Air (AirDAI), which involves local training on raw data and sending trained outputs, such as model parameters, from local clients back to a central server for aggregation. To aid the development of AirDAI in wireless communication networks, we suggested a general system design and an associated simulator that can be tailored based on wireless channels and system-level configurations. We also conducted experiments to confirm the effectiveness and efficiency of the proposed system design and presented an analysis of the effects of wireless environments to facilitate future implementations and updates. This thesis proposes FedForest to address the communication and computation limitations in heterogeneous edge networks, which optimizes the global network by distilling knowledge from aggregated sub-networks. The sub-network sampling process is differentiable, and the model size is used as an additional constraint to extract a new sub-network for the subsequent local optimization process. FedForest significantly reduces server-to-client communication and local device computation costs compared to conventional algorithms while maintaining performance with the benchmark Top-K sparsification method. FedForest can accelerate the deployment of large-scale deep learning models on edge devices.

Page generated in 0.0706 seconds