• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 12
  • 3
  • 1
  • Tagged with
  • 37
  • 37
  • 15
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferrocement structures : constitutive relations, non-linear finite element analysis, and analogy with reinforced concrete

Prakhya, Ganga Kasi Viswanadha January 1989 (has links)
No description available.
2

Energy absorption and crush behaviour of composite tubes

Curtis, C. D. January 2000 (has links)
No description available.
3

Indentation and penetration of a spherical elastic membrane filled with fluid

Aboudzadeh Deris, Amir Hosein 16 January 2014 (has links)
The applications of elastic membrane range from determining the mechanical properties of biological cells by indentation tests to predicting the deformed shape of a large commercial tent structure. In this work, direct membrane theory and a particular Varga strain energy function are used to model the indentation and puncturing of an isotropic spherical elastic membrane containing a fluid with a rigid indenter. The balance laws are applied to obtain the governing differential equations and numerical shooting method is used to solve them. Furthermore, a global mode of failure is established by computing the energy stored at the punctured membrane and this value determines a critical value for the energy of the membrane beyond which the punctured state of the membrane is energetically preferred. An additional mode of failure is identified in which the membrane loses local convexity requirements and it corresponds to the local loss of elastic behavior of the membrane. / Graduate / 0548 / deris@Uvic.ca
4

Progressive Failure Analysis of Laminated Composite Structures

Khan, Arafat Islam 15 December 2015 (has links)
Laminated composite structures have started to play a very significant role in today's aircraft industry. The application of composite materials has now gone beyond the borders of aircraft design and has entered into such fields as automotive, athletics and recreational equipment, etc. The light weight and high specific strength of composite material helps design vehicles with higher fuel efficiency and longevity. In order to understand the influence of design parameters related to the use of composite materials in these applications, a proper study of the laminated composite structures requires a complete failure analysis, which includes both initiation and propagation of damage. In this work a progressive failure methodology is developed and implemented in the commercial Finite Element software package, Abaqus. Out of the numerous failure criteria available in the literature to study damage initiation and propagation in unidirectional fiber reinforced composites, Puck and Schurmann's failure criteria have been chosen due to their ability to predict results close to those observed experimentally. Key features of the Puck and Schurmann's failure criteria for three-dimensional deformations of unidirectional fiber reinforced composites have been summarized. Failure modes in the matrix and the fiber are considered separately. The failure criteria are simplified for plane stress deformations. Whereas the failure plane can be analytically identified for plane stress deformations, a numerical search algorithm is needed for three-dimensional problems. Subsequent to the initiation of matrix failure, elastic moduli are degraded and values of these degradation parameters and fracture plane angles are found by using a Continuum Damage Mechanics (CDM) approach. It is found that the assumption that the material response remains transversely isotropic even after the matrix failure has initiated requires the degradation of the transverse Poisson's ratio. The Puck and Schurmann's failure criteria and the material degradation process have been implemented as a User Defined Field (USDFLD) subroutine in Abaqus. The implementation has been verified by analytically computing results for simple loadings and comparing them with predictions from using the USDFLD in Abaqus. Subsequently, both two- and three-dimensional problems of more realistic geometries and loadings have been analyzed and computed results compared with either experimental findings or results available in the literature. Major contributions of the work include identifying the degradation parameter for the transverse Poisson's ratio in terms of the matrix degradation parameter for the matrix failure in compression, development of the USDFLD based on Puck and Schurmann's failure criteria, implementing the USDFLD in the commercial finite element software, Abaqus, and verifying that results computing using the USDFLD for various laminates and loadings agree with those from either the analytical solution of the problem or those available in the literature. / Ph. D.
5

ANALYSIS OF THE ARMPS DATABASE USING FLAC3D; A PILLAR STABILITY COMPARISON FOR ROOM AND PILLAR COAL MINES DURING DEVELOPMENT

Soltani, Ali 01 January 2015 (has links)
Designing a safe and economical mining activity is the main goal of every mine design engineer. With the rise of computer modeling in mine design there is a need for a standardized method to use geologic characterization of rocks in engineering design. In this research, first a review of empirical methods will be conducted and after that a step-by-step method is presented to adequately use FLAC3D, for development pillars, in room and pillar mine in development stage. ARMPS database is used to evaluate the FLAC3D model results. ARMPS database consists of 645 case study in room and pillar mines. 170 of them are mines in development phase. In this research all 170 cases will be analyzed in FLAC3D v4.0 and the results will be compared to actual success and failure from the database. Also, the stability factor found from FLAC3D will be compared to ARMPS. Finally, it is tried to calibrate FLAC3D stability factor so it can be used in room and pillar design.
6

Analysis Of The Formability Of Metals

Kocak, Ozgur 01 July 2003 (has links) (PDF)
Workpieces during cold forging fail basically due to ductile fracture. Ductile fracture can be predicted by damage models. In this study, various damage models such as Cockcroft &amp / Latham, McClintock, Freudenthal, Rice &amp / Tracy, Oyane, Ayada, Brozzo are investigated for their applicability to three workpiece materials: bearing steel (100Cr6), stainless steel (X5CrNiMo1810) and brass (CuZn39). The damage material parameters have been obtained by various tests such as tensile, standard compression, ring compression, compression with flanges and conical compression tests. The characterization has been assisted by finite element simulation of the various tests. It has been shown that the available damage models can predict the location of failure satisfactorily but are no able to predict the onset of failure quantitatively. Keywords: Formability Limit, Failure Criteria, Cold Forming, Surface Cracks, Finite Element Analysis
7

Continuum damage model for nonlinear analysis of masonry structures

Pelà, Luca 26 March 2009 (has links)
The present work focuses on the formulation of a Continuum Damage Mechanics model for nonlinear analysis of masonry structural elements. The material is studied at the macro-level, i.e. it is modelled as a homogeneous orthotropic continuum. The orthotropic behaviour is simulated by means of an original methodology, which is based on nonlinear damage constitutive laws and on the concept of mapped tensors from the anisotropic real space to the isotropic fictitious one. It is based on establishing a one-to-one mapping relationship between the behaviour of an anisotropic real material and that of an isotropic fictitious one. Therefore, the problem is solved in the isotropic fictitious space and the results are transported to the real field. The application of this idea to strain-based Continuum Damage Models is rather innovative. The proposed theory is a generalization of classical theories and allows us to use the models and algorithms developed for isotropic materials. A first version of the model makes use of an isotropic scalar damage model. The adoption of such a simple constitutive model in the fictitious space, together with an appropriate definition of the mathematical transformation between the two spaces, provides a damage model for orthotropic materials able to reproduce the overall nonlinear behaviour, including stiffness degradation and strain-hardening/softening response. The relationship between the two spaces is expressed in terms of a transformation tensor which contains all the information concerning the real orthotropy of the material. A major advantage of this working strategy lies in the possibility of adjusting an arbitrary isotropic criterion to the particular behaviour of the orthotropic material. Moreover, orthotropic elastic and inelastic behaviours can be modelled in such a way that totally different mechanical responses can be predicted along the material axes. The aforementioned approach is then refined in order to account for different behaviours of masonry in tension and compression. The aim of studying a real material via an equivalent fictitious solid is achieved by means of the appropriate definitions of two transformation tensors related to tensile or compressive states, respectively. These important assumptions permit to consider two individual damage criteria, according to different failure mechanisms, i.e. cracking and crushing. The constitutive model adopted in the fictitious space makes use of two scalar variables, which monitor the local damage under tension and compression, respectively. Such a model, which is based on a stress tensor split into tensile and compressive contributions that allows the model to contemplate orthotropic induced damage, permits also to account for masonry unilateral effects. The orthotropic nature of the Tension-Compression Damage Model adopted in the fictitious space is demonstrated. This feature, both with the assumption of two distinct damage criteria for tension and compression, does not permit to term the fictitious space as “isotropic”. Therefore, the proposed formulation turns the original concept of “mapping the real space into an isotropic fictitious one” into the innovative and more general one of “mapping the real space into a favourable (or convenient) fictitious one”. Validation of the model is carried out by means of comparisons with experimental results on different types of orthotropic masonry. The model is fully formulated for the 2-dimensional case. However, it can be easily extended to the 3-dimensional case. It provides high algorithmic efficiency, a feature of primary importance when analyses of even large scale masonry structures are carried out. To account for this requisite it adopts a strain-driven formalism consistent with standard displacement-based finite element codes. The implementation in finite element programs is straightforward. Finally, a localized damage model for orthotropic materials is formulated. This is achieved by means of the implementation of a crack tracking algorithm, which forces the crack to develop along a single row of finite elements. Compared with the smeared cracking approach, such an approach shows a better capacity to predict realistic collapsing mechanisms. The resulting damage in the ultimate condition appears localized in individual cracks. Moreover, the results do not suffer from spurious mesh-size or mesh-bias dependence. The numerical tool is finally validated via a finite element analysis of an in-plane loaded masonry shear wall.
8

Simulation of Progressive Shear Failure in Railway Foundation

Li, Xu Dong 24 November 2020 (has links)
Railways are one of the largest transportation networks in the world that play an important role in the mass transportation of both the passengers and freight. The speed of trains and as well as the axial load carrying capacity have been increasing significantly during the past few decades to keep in pace with the population and economy growth and to compete with other modes of transportation such as the road, air and water transportation system. Billions of dollars are spent annually for maintenance of rail tracks in the world. The efficient and optimum use of these funds is a challenging task that demands innovative and cutting edge technologies in railway engineering. The railway subgrade is an important part of railway foundation and should be capable of providing a suitable base supporting the ballast and subballast to accommodate the stresses due to traffic loads without failure or excessive deformation. The progressive shear failure is a well-known and age old challenging problem for railways over the world for centuries. The subgrade of railway track which typically constitutes of fine-grained material tends to fail through the accumulation of soil movements up- and sideward developing a path for the least resistance along which progressive shear failure occurs under repeated train-induced loads and due to the effects of climate factors. To-date, limited number of studies have addressed failure mechanism associated with the progressive shear failure, especially using the mechanics of unsaturated soils. In this thesis, a novel and first of its kind, Visual Basic program developed in AutoCAD environment based on Mohr-Coulomb failure criteria and unsaturated soil mechanics theory. This program is capable of taking account of the influence of matric suction and simulate progressive shear failure in the subgrade under moving train. Simulation results suggest several parameters that include stress distribution, matric suction, cohesion, coefficient of lateral earth pressure at rest, and coefficient of residual friction as well as the angle of internal friction have a significant effect on the progressive shear failure and the shape of failure planes in the subgrade. The progressive shear failure in subgrade can be reduced by increasing matric suction, cohesion, coefficient of lateral earth pressure at rest, and coefficient of residual friction as well as the angle of internal friction, and optimizing combination of these parameters. The simulation results suggest the progressive shear failure can be well simulated with the Mohr-Coulomb failure criteria. Several suggestions are made for railway subgrade construction and maintenance based on the results of this study.
9

Reliability Analysis of Low-Silver BGA Solder Joints Using Four Failure Criteria

Kimura, Erin A. 01 November 2012 (has links) (PDF)
The appropriate selection of failure criterion for solder joint studies is necessary to correctly estimate reliability life. The objective of this study is to compare the effect of different failure criteria on the reliability life estimation. The four failure criteria in this study are a 20% resistance increase defined in the IPC-9701A standard, a resistance beyond 500 Ω, an infinite resistance (hard open), and a failure criterion based on X-bar and R control charts. Accelerated thermal cycling conditions of a low-silver BGA study included 0°C to 100 °C with ten minute dwell times and -40°C to 125°C with ten minute dwell times. The results show that the life estimation based on X-bar and R failure criterion is very similar to the life estimation when a 20% resistance increase defined in the IPC-9701A failure criterion is used. The results also show that the reliability life would be overestimated if the failure criterion of a resistance threshold of 500 Ω or an infinite resistance (hard open) is used.
10

A Model for Prediction of Fracture Initiation in Finite Element Analyses of Eccentrically Loaded Fillet Welds

Kulkarni, Abhishek N. 07 November 2017 (has links)
No description available.

Page generated in 0.0427 seconds