• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 172
  • 81
  • 28
  • 18
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1310
  • 1310
  • 1310
  • 482
  • 217
  • 153
  • 153
  • 142
  • 134
  • 126
  • 118
  • 116
  • 113
  • 97
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical modelling of the diffusion of liquids in stressed polymers

Shanati, Shafic January 1994 (has links)
No description available.
2

Observations on the design of rectangular storage tanks

Timmins, David January 1996 (has links)
No description available.
3

Lagrange multiplier method for contact and friction : implementation and theory

English, Russell Gary January 1993 (has links)
No description available.
4

Hierarchical strategy for rapid finite element analysis

Varghese, Julian 30 September 2004 (has links)
A new methodology is introduced where the natural hierarchical character of model descriptions and simulation results are exploited to expedite analysis of problems. The philosophy and the different concepts involved are illustrated by implementing the strategy to solve some practical problems. The end result was a mix of mechanics, well-designed data structures and software interfaces that forms a rapid analysis environment. This can be very advantageous for cases where a sequence of analyses is required because of safety concerns or cost. When designing a structure, it is common to make frequent modifications to the model during the process. In such cases, the ability to use data from different models within the same analysis environment becomes a major advantage. The proposed system's forte is its hierarchical framework that allows models to communicate with each other and share information with one another. This makes it ideal for global local analyses where solutions from a global model are used to derive the boundary conditions for the local model. The system was also used to conduct a micro mechanical analysis on unidirectional composites that have a non-uniform spatial distribution of the fibers. The hierarchical strategy is not tied to any specific methodology and can be adapted to solve problem using different technologies. This allows the strategy to be used across multiple length scales and governing equations.
5

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

Hoque, Mohammad M. 05 April 2006 (has links)
Three 3D nonlinear finite-element (FE) models are developed to study the behavior of concrete beams and plates with and without externally reinforcement of fibre reinforced polymer (FRP). Ramtekkar’s mixed layer-wise 3 dimensional (3D) 18-node FE model (108 degrees-of-freedom, DOFs) is modified to accommodate the nonlinear concrete and elasto-plastic steel behaviour. Saenz’s stress-strain equation is used for material nonlinearity of concrete. As in any 3D mixed FE analysis, the run time using the model can be computationally expensive. Two additional layer-wise 18-node FE models: Displacement FE model (54 DOF) and transitional FE model (81 DOF) are developed. The displacement FE model is based on purely displacement field, i.e. only displacement components are enforced throughout the thickness of the structures. The transitional FE model has six DOF (three displacement components in the coordinate axis direction and three transverse stress components - where z is the thickness direction) per node in the upper surface and only three DOF (three displacement components in the coordinate axis direction) per node in the bottom surface.The analysis of reinforced concrete (RC) beam strengthened with FRP and composite plate using these models are verified against the experimental results and the results from the commercial software, ANSYS respectively. Several parametric studies are done on composite RC beam and composite plate. / May 2006
6

Hierarchical strategy for rapid finite element analysis

Varghese, Julian 30 September 2004 (has links)
A new methodology is introduced where the natural hierarchical character of model descriptions and simulation results are exploited to expedite analysis of problems. The philosophy and the different concepts involved are illustrated by implementing the strategy to solve some practical problems. The end result was a mix of mechanics, well-designed data structures and software interfaces that forms a rapid analysis environment. This can be very advantageous for cases where a sequence of analyses is required because of safety concerns or cost. When designing a structure, it is common to make frequent modifications to the model during the process. In such cases, the ability to use data from different models within the same analysis environment becomes a major advantage. The proposed system's forte is its hierarchical framework that allows models to communicate with each other and share information with one another. This makes it ideal for global local analyses where solutions from a global model are used to derive the boundary conditions for the local model. The system was also used to conduct a micro mechanical analysis on unidirectional composites that have a non-uniform spatial distribution of the fibers. The hierarchical strategy is not tied to any specific methodology and can be adapted to solve problem using different technologies. This allows the strategy to be used across multiple length scales and governing equations.
7

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

Hoque, Mohammad M. 05 April 2006 (has links)
Three 3D nonlinear finite-element (FE) models are developed to study the behavior of concrete beams and plates with and without externally reinforcement of fibre reinforced polymer (FRP). Ramtekkar’s mixed layer-wise 3 dimensional (3D) 18-node FE model (108 degrees-of-freedom, DOFs) is modified to accommodate the nonlinear concrete and elasto-plastic steel behaviour. Saenz’s stress-strain equation is used for material nonlinearity of concrete. As in any 3D mixed FE analysis, the run time using the model can be computationally expensive. Two additional layer-wise 18-node FE models: Displacement FE model (54 DOF) and transitional FE model (81 DOF) are developed. The displacement FE model is based on purely displacement field, i.e. only displacement components are enforced throughout the thickness of the structures. The transitional FE model has six DOF (three displacement components in the coordinate axis direction and three transverse stress components - where z is the thickness direction) per node in the upper surface and only three DOF (three displacement components in the coordinate axis direction) per node in the bottom surface.The analysis of reinforced concrete (RC) beam strengthened with FRP and composite plate using these models are verified against the experimental results and the results from the commercial software, ANSYS respectively. Several parametric studies are done on composite RC beam and composite plate.
8

Element-by-element methods in transient analysis

Wong, S-W. January 1987 (has links)
No description available.
9

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

Hoque, Mohammad M. 05 April 2006 (has links)
Three 3D nonlinear finite-element (FE) models are developed to study the behavior of concrete beams and plates with and without externally reinforcement of fibre reinforced polymer (FRP). Ramtekkar’s mixed layer-wise 3 dimensional (3D) 18-node FE model (108 degrees-of-freedom, DOFs) is modified to accommodate the nonlinear concrete and elasto-plastic steel behaviour. Saenz’s stress-strain equation is used for material nonlinearity of concrete. As in any 3D mixed FE analysis, the run time using the model can be computationally expensive. Two additional layer-wise 18-node FE models: Displacement FE model (54 DOF) and transitional FE model (81 DOF) are developed. The displacement FE model is based on purely displacement field, i.e. only displacement components are enforced throughout the thickness of the structures. The transitional FE model has six DOF (three displacement components in the coordinate axis direction and three transverse stress components - where z is the thickness direction) per node in the upper surface and only three DOF (three displacement components in the coordinate axis direction) per node in the bottom surface.The analysis of reinforced concrete (RC) beam strengthened with FRP and composite plate using these models are verified against the experimental results and the results from the commercial software, ANSYS respectively. Several parametric studies are done on composite RC beam and composite plate.
10

Finite element modelling of tennis racket impacts to predict spin generation

Weir, David January 2013 (has links)
Over the last 20-30 years the subject of spin in tennis has become increasingly important. A great deal of work has been done to establish the effects which, increased levels of spin have, on shots. The most prominent effect of increased spin in a tennis shot is the resulting deviation in flight which allows players to, amongst other things, strike the ball harder with top-spin in the knowledge that it will still fall inside the court due to the extra aerodynamic downward force. With such significant advantages available racket manufacturers are naturally keen to maximise spin generation. That being said, very little research has been performed into the subject of spin generation in tennis and the affecting factors. This thesis details the development of a finite element model which is to be used to allow a greater understanding of spin generation and how varying properties such as string density (the number of strings in a string-bed), gauge and orientation affect its magnitude. The primary aim, or goal, of this research is to create an FE model which can be used to model oblique impacts and measure the resulting spin. Whilst considerable focus was placed on developing novel, modelling techniques to create the FE model, a great deal of emphasis was also placed on its validation. The validity of the model was examined under static loading conditions, such as that experienced during stringing. The dynamic performance was also validated using a combination of modal analysis and high speed video of dynamic impacts. Each of the validation methods provided assurance of the models performance, with all error margins less than 5%. The two areas of the FE model which required the most attention were the interaction properties (specifically coefficient of friction (COF)) and material properties. Previous studies have sought to obtain a single value for the COF of a tennis racket/ball system but this study examines how the COF varies as the strings interact first, with themselves and secondly with the ball. Each of the validation methods (dynamic and static) were deemed successful as they provided concise data which could be readily compared with the results produced by the FE model. Having validated the model s performance, with respect to predicting outbound spin, a number of oblique impact angles were modelled to allow a greater understanding of how the mechanisms of spin generation change with the inbound trajectory of the ball. This analysis showed that for the impact conditions studied the contact time of the impact was reduced from 6.2 milliseconds to 5.7 milliseconds when the angle was increased from 32 degrees to 40 degrees. Furthermore, a number of novel string-beds were modelled, with varying string orientations (between 30 degrees and 60 degrees relative to the rackets frame) and subjected to a similar analysis procedure, with their results providing the concluding section of the thesis.

Page generated in 0.0578 seconds