Spelling suggestions: "subject:"[een] GREENHOUSE GASES"" "subject:"[enn] GREENHOUSE GASES""
1 |
Development of new cryogenic extraction techniques for studying stable isotopic ratios in atmospheric methaneRata, Nigel David January 1999 (has links)
No description available.
|
2 |
Investigations into new methods for the destruction of CFâ†4 and Câ†2Fâ†6Lott, Robert Martin Terence January 1997 (has links)
No description available.
|
3 |
Molecular ecology of methane-oxidising bacteria in drained and flooded peatMorris, Samantha Anne January 2002 (has links)
Evidence has shown that changes in land-use can affect the potential of the soil to act as a methane sink. The Lakenheath site consists of drained fenland peat, which is being re-converted to wetland. At the time of this study the site consisted of four land-use types, an intensively cultivated plot, unmanaged grassland, woodland, and wetland. Peat cores were taken from the four plots and compared for their ability to act as a methane sink. CH4 uptake was measured throughout the depth profiles using gas chromatography. Clear differences in methane oxidation rates were recorded with depth and land-use. The woodland soil showed the highest capacity for atmospheric methane oxidation, and the wetland soil was only profile that had a distinct peak of methane oxidation activity (just above the water table). Despite the change in land-use, all four soils had the capacity to oxidise both high and low concentrations of methane and so acted as a methane sink. The only exception to this was the wetland soil after persistent rainfall. The uppermost layers were water saturated and all soil sections failed to oxidise methane. Methanotroph diversity in the four soils was compared using molecular biological and enrichment techniques. Total DNA was extracted from depth profiles of the four soils and PCR amplified with 16S rRNA methanotroph group-specific primers and primers specific to subunits of the pMMO and AMO (pmoA and amoA), sMMO (mmoX) and MDH (methanol dehydrogenase, mxaF). In addition, DNA was extracted from the top 5 cm of the cultivated (drained) and flooded soil and PCR amplified with primers specific to subunits of the pMMO and AMO. These PCR products were cloned and gene libraries constructed for each soil. No significant differences were observed in retrieved methanotroph sequences from these two soils, suggesting that the methanotroph population had not altered after flooding. The sequences obtained in the molecular study were predominantly amoA sequences from nitrifiers and pmoA sequences from type II methanotrophs. No type I pmoA sequences were retrieved. Type I methanotrophs, however, were isolated directly from the peat soil in the enrichment study.
|
4 |
Mechanistic studies of the photo-oxidation of some halogenated species of atmospheric interestRicher, Hannah R. January 1994 (has links)
No description available.
|
5 |
EFFECT OF NITROGEN FERTILIZER ON NITROUS OXIDE EMISSIONS FROM THE SOIL FOR TWO POTENTIAL ENERGY CROPS AND THE RELATIVE GREENHOUSE GAS EMISSIONSWile, Adam 10 August 2010 (has links)
The benefits from energy crops are debated. This two-year study was designed to investigate nitrous oxide (N2O) emissions, yield and ash content from fertilized bioenergy crops switchgrass and reed canary grass with and without inter-seeded red clover. Overall, N2O emissions were less than 1kg N2O-N ha-1 in the first year and around 100g N2O-N ha-1 in the second year with a N fertilizer effect in the first year. Plots inter-seeded with red clover received half the N fertilizer of pure grass stands but showed no difference in N2O emissions compared to the pure stands and also had higher ash content. Cumulative soil mineral N responded to N fertilizer addition but no effect of crop type was evident in 2008 and 2009. Yields for both crops were unresponsive to N fertilizer addition while pure switchgrass yielded higher than inter-seeded switchgrass in 2008 and switchgrass had lower ash content.
|
6 |
Limiting transportation sector greenhouse gas emissions : the role of system interaction on policy portfolio effectiveness /Stepp, Matthew. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 120-127).
|
7 |
Municipal climate change action : a case study of the city of Ottawa's "Task Force on the Atmosphere Action Plan."Strong, Mary Anne, January 1900 (has links)
Thesis (M.A.)--Carleton University, 2001. / Includes bibliographical references (p. 185-195). Also available in electronic format on the Internet.
|
8 |
Greenhouse gas emissions from Pacific Northwest forestry operations : implications for forest management /Hall, Edith Carol Sonne. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 128-139).
|
9 |
COMPARATIVE ECONOMIC AND ENVIRONMENTAL TRADE-OFF ANALYSIS FOR MANITOBA COW-CALF PRODUCTION2016 January 1900 (has links)
There were 12.5 million head of cattle in all of Canada as of January 1st, 2012, of which 7.4 million were on cow-calf farms. Of this population, 1.2 million head of cattle were in Manitoba, and within that, 880 thousand were on cow-calf farms. Canadian and Manitoba beef producers have experienced significant volatility in the cattle market. This is partly as a result of loss of exports of cattle to the United States, first due to occurrence of the Bovine spongiform encephalopathy (BSE) Crisis, and then through the Country of Origin Labelling (COOL) legislation developed in the United States.
While the beef industry has endured market fluctuations, the North American cattle herd has also been responsible for greenhouse gas (GHG) emissions, through enteric fermentation within their digestive tracks, storage of manure on farms, through the spread of manure on crop fields, and through the production of feed for cattle. Of the total Canadian GHG emissions, agriculture contributed 8 percent in 2013. For the same year, within the total agricultural GHG emissions, cattle and sheep production resulted in 40 percent of methane emissions, and 90 percent of nitrous oxide emissions, both expressed in carbon dioxide equivalent. Regionally, the share of agricultural GHG emissions in Manitoba make up a larger proportion of total provincial GHG emissions, at 31 percent of 21.4 Mt CO2e, as the province has fewer emissions from transportation or stationary combustion..
The confluence of low profitability and larger amounts of GHG emission (relative to other provinces) has led to some discussion on adopting measures to reduce these emissions. This has caused some stress in the beef industry, as some of these proposed solutions could lead to further loss in profits. An European study of the beef sector has investigated the impact of some policy instruments, such as emission taxes, and has suggested that while such measures are effective, they would also be financially restrictive to beef producers, or result in high administrative costs for governments (Neufeldt and Schäfer 2008). However, these measures might be unnecessary, as the Manitoba Beef Producers (2011) have indicated that the Manitoba beef producers are willing to undertake alternate management practices to benefit environmental causes if they do not negatively affect their profitability or livelihoods. Therefore, providing methods that lead to lower GHG emissions while providing high levels of profitability, or maintaining current levels of profitability would be considered a welcome set of information for the Manitoba beef cattle producers (and likely producers in other provinces).
In order to understand GHG emissions on beef farms, a Canada-wide survey was undertaken in 2012. Financial support for this survey was provided by a variety of interested parties including the University of Manitoba, Alberta Agriculture and Rural Development, the BC Ministry of Agriculture, Manitoba Agriculture Food and Rural Initiatives, and Agriculture and Agri-Food Canada, with the support of the Beef Cattle Research Council. Researcher Aklilu Alemu from the University of Manitoba used principle component analysis and cluster analysis to create eight clusters of representative farms across the country. Of the eight Canadian clusters, only four clusters had a population greater than one in Manitoba. The centroid from each cluster was chosen as a representative farm for this study. Estimates of GHG emissions from each farm were then determined using Holos, a GHG emission model developed by the Government of Canada.
To compare GHG emissions against profitability on a farm, this study evaluated revenues and costs of four Manitoba farms (One each from the four clusters). The revenues included the sale of weaned calves and cull cows, as well as the sale of unused feed and non-feed grain. The costs for the whole farm included the cost to grow feed for the cattle, while operating costs for each of these farms included veterinary, transportation, manure removal, and utility costs. The fixed costs (related to farm structures and machinery) were comprised of depreciation and interest costs. In order to understand the profitability of the beef enterprise as well as the whole farm, the costs and revenues were estimated at three levels: beef enterprise, the whole farm, and the family level.
With regards to the beef enterprise, the farm in Cluster Four had the highest level of profitability, at $0.05 per pound of live animal weight sold [or on a per pound sold (PPS) basis]. At the same time, this farm was also able to achieve the lowest GHG emissions, at 2.20 lbs. PPS basis measured in Carbon Dioxide Equivalent (CO2e). The farm with the second lowest level of GHG emissions (9.68 lbs. CO2e on a PPS basis) were estimated for the Cluster Six Farm, which also had the second highest profitability ($0.01 on a PPS basis).
When measured at the beef enterprise level, several farms had net GHG emissions. Higher farm level profitability was contributed by a high weaning weight, the lower cost to produce feed, and the strategic purchase of machinery to feed each herd. Lower emissions were noted on farms with tame pastureland and greater amounts of forage with alfalfa.
Comparing profits and GHG emissions at the whole farm level showed different results. The Cluster Seven farm had the highest level of profitability ($1.53 on a PPS basis) while it was also the largest contributor to GHG emissions (12.16 lbs. CO2e on a PPS basis). Cluster Six farm was the second largest contributor to GHG emissions (7.54 lbs. CO2e on a PPS basis), but also created the least profit on its farm ($0.13 on a PPS basis). The farms with net sequestration (i.e., GHG emissions were negative) were Cluster Four and Cluster One farms. Both of these farms were both able to create profitability. On a PPS basis, Cluster Four farm had the second highest profitability ($0.80 on a PPS Basis) and sequestered second greatest emissions (2.38 lbs CO2e on a PPS basis). Cluster One farm had the second lowest profitability ($0.33 on a PPS basis) and sequestered the most GHGs (30.17 lbs CO2e on a PPS basis). Increases in the level of net sequestration were due to tame pastureland and large amounts of unused hay growth which included legumes such as alfalfa. Increases in profitability were due to the sale of non-feed grains, feed grains or hay, as well as other factors noted above regarding the beef enterprise.
These findings suggest that Manitoba beef producers could provide greater profitability and lower GHG emissions if they increased their weaning weights, increased the size of their herds, invested in tame pastureland when possible, and cut their forage several times throughout the growing season.
Since this study is based on a single farm from four clusters, additional research is necessary. This may include studying several farms in each cluster in order to determine variability in long-term feed production, as well as in costs and revenues.
|
10 |
Livscykelanalys av granulärt svavel respektive torv : Vilken produkt genererar minst utsläpp av växthusgaser?Reinklou, Johan January 2016 (has links)
The purpose of this report was to investigate which of the two products peat and granular sulphur that generates the least greenhouse gas emissions. The study was performed by doing a comparative Life Cycle Assessment (LCA) on the two different products. To perform the LCA, a standard from the Swedish Standards Institute was used. Data to put into the calculation was obtained from both Umeå Energi, their contractors and different internet-sources. The data was then multiplied with specific emission factors to get the total emission of greenhouse gases, expressed as carbon dioxide equivalents. Since peat is considered both a fossil energy source and a renewable energy source two calculations were made in the case of peat production. Results showed that granular sulphur generated the least emissions (23.0), peat classified as a renewable energy source second most emissions (71.5) and peat classified as a fossil energy source by far the most emissions (978.2). The conclusion to be made by this study is that if only the emission of greenhouse gases are important when choosing a product, granular sulphur should be used. Key words: peat, greenhouse gases, LCA, sulphur.
|
Page generated in 0.0438 seconds