• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 26
  • 13
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 187
  • 52
  • 46
  • 41
  • 31
  • 30
  • 28
  • 27
  • 27
  • 22
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimising hydraulic fracture treatments in reservoirs under complex conditions

Valencia, Karen Joy, Petroleum Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Growing global energy demand has prompted the exploitation of non-conventional resources such as Coal Bed Methane (CBM) and conventional resources such as gas-condensate reservoirs. Exploitation of these resources primarily depends on stimulation by hydraulic fracturing. Traditional hydraulic fracturing practices, however, are in many ways inadequate in addressing difficulties associated with these non-conventional and conventional resources. For example, complex in-situ stress distribution, large material property contrasts and unique production mechanism complicate the implementation of hydraulic fracture treatments in CBM and gas-condensate reservoirs respectively. An integrated approach to optimise hydraulic fracture treatments in reservoirs under complex conditions is developed in this thesis. The optimisation methodology integrates a fracture geometry model which predicts fracture geometry for a given set of treatment parameters, a production model which estimates reservoir productivity after stimulation and an economic model which calculates net present value. A stochastic optimisation algorithm combining features of evolutionary computations is used to search for the optimum design. Numerical techniques such as finite element analysis, iterative semi-analytical methods and evolutionary computation are also used. The following are the major contributions of this thesis: 1. A three-dimensional hydraulic fracture geometry model which accounts for poroelastic effects, in-situ stress and rock material properties, has been developed to provide a more realistic description of the hydraulic fracture geometry. This served as a tool to visualise hydraulic fracture propagation for a given in-situ stress distribution, rock material properties and treatment parameters. Furthermore, by accounting for poroelastic effects, it is possible to identify the causes of exceptionally high treatment pressures. 2. An innovative production model was formulated in this thesis to quantify the well deliverability due to hydraulic fracturing. The production model has been used for a range of production scenarios for CBM and gas-condensate reservoirs such as: multiple wells at arbitrary locations and various well types (stimulated and unstimulated wells). 3. The optimisation methodology presented in this work provides a platform for operators to assess risks and gains associated with different field development scenarios. The added feature of sub-optimal NPV contouring provided flexibility to calibrate the treatment design in real-time. The strength of the optimisation methodology lies in the flexibility to: (1) impose design constraints, (2) optimise multiple variables and (3) simulate multiple objectives.
2

Effect of well configurations on productivity index of gas well producing from shale

Abdullaay, Emaadeldein. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xiii, 99 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references (p. 95-99).
3

Settling and hydrodynamic retardation of proppants in hydraulic fractures

Liu, Yajun 28 August 2008 (has links)
Not available / text
4

Dynamic fluid loss characteristics of linear fracturing gels and associated permeability impairment

al-Najafi, Falah January 1986 (has links)
No description available.
5

Acoustic properties of a 2-D fracture during formation

Echavarria, Erika. January 1999 (has links)
Thesis (M.S.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains xiii, 132 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 98).
6

Modeling proppant flow in fractures using LIGGGHTS, a scalable granular simulator

Shor, Roman J. 10 October 2014 (has links)
Proppant flowback in fractures under confining pressures is not well understood and difficult to reproduce in a laboratory setting. Improper management of proppant flowback leads to flow restrictions near the well bore, poor fracture conductivity and costly production equipment damage. A simple, scalable model is developed using a discrete element method (DEM) particle simulator, to simulate representative cubic volumes consisting of fracture openings, fracture walls and the confining formation. The effects of fracture width, confining stress, fluid flow velocity and proppant cohesion are studied for a variety of conditions. Fracture width is found to be dependent on confining stress and fluid flow velocity while proppant production is also dependent on cohesion. Three regimes are observed, with complete fracture evacuation occurring at high flow rates and low confining stresses, fully packed fractures occurring at high confining stresses and open but mostly evacuated fractures occurring in-between. From these observations, a recommended flowback rate can be estimated for a given set of conditions. A slow and controlled well flowback is recommended to improve proppant pack stability. The rate ramp-up time is dependent on the leak-off coefficient. / text
7

'n Studie oor kraking en hidrokraking met wolfram houdende katalisatore

25 November 2014 (has links)
D.Sc. / Please refer to full text to view abstract
8

Turbulent hydraulic fracturing described by Prandtl's mixing length

Newman, Despina 19 September 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa, in fulfilment of the requirements for the degree of Master of Science. 21 March 2016. / The problem of turbulent hydraulic fracturing is considered. Despite it being a known phenomenon, limited mathematical literature exists in this field. Prandtl’s mixing length model is utilised to describe the eddy viscosity and a mathematical model is developed for two distinct cases: turbulence where the kinematic viscosity is sufficiently small to be neglected and the case where it is not. These models allow for the examination of the fluid’s behaviour and its effect on the fracture’s evolution through time. The Lie point symmetries of both cases are obtained, and a wide range of analytical and numerical solutions are explored. Solutions of physical significance are calculated and discussed, and approximate solutions are constructed for ease of fracture estimation. The non-classical symmetries of these equations are also investigated. It was found that the incorporation of the kinematic viscosity within the modelling process was important and necessary. / MT2016
9

Investigating the role of proppants in hydraulic fracturing of gas shales

Bou Hamdan, Kamel F. January 2019 (has links)
No description available.
10

Permeability and strength of artificially controlled porous media

Pasumarty, Suresh. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xii, 99 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 53-54).

Page generated in 0.0491 seconds