• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 867
  • 674
  • 217
  • 170
  • 68
  • 23
  • 22
  • 17
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • Tagged with
  • 2693
  • 2693
  • 627
  • 529
  • 457
  • 299
  • 250
  • 246
  • 238
  • 221
  • 211
  • 207
  • 203
  • 184
  • 155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

The effect of repetitive drop jumps on landing mechanics

Weinhandl, Joshua T. January 2007 (has links)
The purpose of the study was to investigate the effects of fatigue on the lower extremity landing strategies of males and females. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 20% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase of all jumps. At initial ground contact, males exhibited greater extension at the hip and knee and less plantar flexion than females. However, females performed more eccentric work during the impact phase of landing. Fatigue resulted in an increased extension at the hip, knee, and ankle for both genders, but did not have an effect on the peak VGRF. Fatigue also resulted in an increase in work performed at the ankle and an approximately equal reduction in work performed at the knee for both genders. Investigation of the peak powers revealed that as a result of fatigue, females utilized a landing strategy in which more energy was absorbed at the knee during the early part of the impact phase. The increased reliance on the knee musculature to dissipate kinetic energy during the impact phase of landing demonstrated by females may be a reason for the commonly seen gender disparities in injury rates. Furthermore, the shift towards energy absorption during the initial part of the impact phase when noncontact injuries are known to occur, exhibited by females, may indicate a greater injury risk for females. / School of Physical Education, Sport, and Exercise Science
362

Power output prediction determined from vertical jump and reach test for male and female university athletes

Johnson, Douglas L. January 1994 (has links)
The purpose of this study was to devise a simple mechanical power formula for both peak and average power using a countermovement jump and reach test for both college male and female athletes. Forty-nine female and 69 male athletes were measured for height, weight, thigh circumference, thigh skinfold, upper leg length, and lower leg length. The athletes performed a countermovement jump and reach test off of a force platform. A Vertec jumping apparatus was used to measure vertical jump height and the force platform was used to acquire force/time data to determine actual peak and average power output. Eight anthropometric measurements, vertical jump height, and gender were the variables presented to develop the equations. A stepwise multiple regression statistical procedure was used to develop the prediction equations. Vertical jump height, mass, and body height were the significant (p<.05) variables loaded into both peak and average mechanical power prediction equations. Gender was not significant (p>.05) and, therefore, not loaded into either equation. Predicted peak power and actual peak power values were 4,707 t 1,511 and 4,687 ± 1,612 watts, respectively. Predicted averagepower and actual average power values were 2,547 ± 760 and 2,463 ± 753 watts, respectively. The following best model regression-derived equations produced R2 values of .91 for peak power and .82 for average power:Peak Power (W) = 78.47 • VJ (cm) + 60.57 • Mass (kg) - 15.31 • Ht (cm) - 1,308 Average Power (W) = 41.41 • VJ (cm) + 31.18 • Mass (kg) - 13.86 • Ht (cm) + 431 Results of this study conclude that the two regression equations are good predictors of peak and average mechanical power output. / School of Physical Education
363

Whole body vibration and drop landing mechanics

Hubble, Ryan P. 21 July 2012 (has links)
Whole body vibration (WBV) is a training modality that involves an individual standing on a plate that provides vibrations at multiple frequencies and amplitudes. Improvements in muscular concentric force production such as power and strength have been extensively studied, however little work has been conducted looking at the effects of WBV on eccentric actions. The landing phase of a jump is an eccentric mechanism to decelerate the body as it prepares to stop or initiate another movement. This study sought to identify the effects of WBV on ground reaction forces, loading rates, valgus knee angles, frontal plane knee moment and jump height, as well as a higher order interaction between gender and time as a result of the vibration. An individualized frequency WBV protocol was utilized as 10 female and 9 male subjects completed drop jumps pre-vibration, post vibration and at 10 and 20 minutes post vibration. Baseline valgus knee angle increased 0.857 degrees post vibration, while remaining increased by 0.917 and 1.189 degrees at the 10 and 20 minute post vibration time intervals, respectively. Repeated measure ANOVA’s revealed that valgus knee angle significantly (p=0.011) increased post vibration. Gender comparisons revealed that females had a significantly greater knee moment (p=0.038) and males significantly jumped higher than females (p<0.001). As an end result following WBV, the subjects landed in significantly greater knee valgus, regardless of sex. Since it has been demonstrated that a knee in a valgus position increases the potential risk for anterior cruciate ligament injury, caution should be taken when combining WBV and jump training protocols. / School of Physical Education, Sport, and Exercise Science
364

The influence of incline walking on knee joint loading

Haggerty, Mason 04 May 2013 (has links)
Access to abstract permanently restricted to Ball State community only. / Access to thesis permanently restricted to Ball State community only. / School of Physical Education, Sport, and Exercise Science
365

Recycled Concrete Aggregate: Influence of Aggregate Pre-Saturation and Curing Conditions on the Hardened Properties of Concrete

Pickel, Daniel 12 May 2014 (has links)
Recycled concrete aggregate (RCA) is a construction material, which is being used in the Canadian construction industry more frequently than it was in the past. The environmental benefits associated with RCA use, such as reduced landfilling and natural aggregate (NA) quarrying, have been identified by industry and government agencies. This has resulted in some incentives to use RCA in construction applications. Some properties of RCA are variable and as a result the material is often used as a structural fill, which is a low risk application. The use of RCA in this application is beneficial from an overall sustainability perspective but may not represent the most efficient use of the material. Efficient use of a material means getting the most benefit possible out of that material in a given application. The initial step in efficient material use is evaluating how a material affects its potential applications. In the case of RCA, this includes its use in concrete as a coarse aggregate. RCA is made up of both aggregate and cement mortar from its original application. Its make-up results in absorption capacities, which are higher than NA. Its high absorption capacity indicates that RCA can retain a relatively large proportion of water. Internal curing of concrete is the practice of intentionally entraining reservoirs of water within concrete. This water is drawn into the cement at a beneficial point in the cement hydration process. This water allows for a more complete hydration reaction, less desiccation, a less permeable concrete pore system, and less susceptibility to the negative effects of poor curing. The potential for RCA to act as an internal curing agent was evaluated in this research. Two RCA types were studied in the course of this research, one RCA of high-quality and one low-quality. These were compared to one NA type, which served as experimental control. Neither RCA type was found to desorb significant amounts of entrained water at relative humidity levels between 85% and 93%. This behaviour indicates that they would not behave as a traditional internal curing agent. Within concrete, the initial saturation levels of these RCAs were 0%, 60% and 100% of their full absorption capacity. The mixtures ranged from 30% RCA (by volume of coarse aggregate) to 100% RCA. These mixtures were subjected to two curing regimes, MTO-specified curing conditions and moist curing, in order to gauge the internal curing potential of the RCA. Fully saturated RCA mixtures were found to retain water throughout the course of testing. They were also found to increase the rate of compressive strength gain at early ages in comparison to similarly cured NA mixtures. Full saturation was found to have a negative effect on the thermal expansion behaviour of the concrete at 28 days concrete age. Permeable porosity of concrete was measured as an indicator of more thorough hydration in RCA concrete, but any potential benefits were masked by the increase in permeable porosity associated with permeable RCA. When compared with NA control mixtures and RCA mixtures cured under ideal conditions, it was found that saturated RCA mixtures provided compressive strength benefits. Low-quality RCA, which lost entrained water earlier in the testing period than high-quality RCA, benefitted in terms of early age compressive strength gains under specified curing conditions. High-quality RCA, which retained a relatively higher proportion of its entrained water throughout the early testing period, improved later age compressive strength under spec-curing conditions. Mixtures with 30% RCA (by volume of coarse aggregate) were generally found to not significantly affect the tensile strength, elastic modulus, and permeable porosity of the concrete. Tensile strength and elastic modulus were found to be consistently lower in RCA concretes, while permeable porosity was consistently higher. However, the magnitudes of these changes were not large enough to be statistically significant based on the testing regime employed. Compressive strength was significantly improved at 28 days when the 30% RCA was fully saturated. 30% RCA mixtures significantly reduced the thermal expansion of concrete at 28 days, which could provide particular benefit to concrete pavement applications. Overall, RCA saturation in new concrete had both positive and negative effects on the properties of concrete, which should both be considered in the context of the application for which RCA concrete is being considered. Specifically, concrete applications with the potential for poor curing and the need for reduced thermal expansion could benefit through the inclusion of coarse RCA. For example, these benefits could manifest in reduced thermal cracking at slab joints and reduced thermal stresses due to temperature gradients in pavements.
366

Mathematical and computational modelling of ultrasound elasticity imaging

Southern, James Alastair January 2006 (has links)
In this thesis a parameter recovery method for use in ultrasound elasticity imaging is developed. Elasticity imaging is a method for using a series of ultrasound images (and the displacement field between them) to estimate the spatial variation of the stiffness of the tissue being imaged. Currently iterative methods are used to do this: a model of tissue mechanics is assumed and a large number of simulations using varying parameters are compared to the actual displacement field. The aim of this work is to develop a solution method that works back from the known displacement field to determine the tissue properties, reducing the number of simulations that must be performed to one. The parameter recovery method is based on the formulation and direct solution of the 2-d linear elasticity inverse problem using finite element methods. The inverse problem is analyzed mathematically and the existence and uniqueness of solutions is described for varying numbers of displacement fields and appropriate boundary conditions. It is shown to be hyperbolic (and so difficult to solve numerically) and then reformulated as a minimization problem with hyperbolic Euler-Lagrange equations. A finite element solution of the minimization problem is developed and implemented. The results of the finite element implementation are shown to work well in recovering the parameters used in numerical simulations of the linear elasticity forward problem so long as these are continuous. The method is shown to be robust in dealing with small errors in displacement estimation and larger errors in the boundary values of the parameters. The method is also tested on displacement fields calculated from series of real ultrasound images. The validity of modelling the ultrasound elasticity imaging process as a 2-d problem is discussed. The assumption of plane strain is shown not to be valid and methods for extending the parameter recovery method to 3 dimensions once 3-d ultrasound becomes more widely used are described (but not implemented).
367

Thermomechanical properties of polymers at high rates of strain

Trojanowski, Albin S. January 1997 (has links)
-1 were achieved when testing specimens and this rate was obtained using a split Hopkinson pressure bar. A substantial number of preliminary tests were conducted in order to obtain a suitable specimen size which was then used in the temperature measurement process. Quasistatic, intermediate and high strain-rate tests were performed; the last utilised the radiometer for temperature measurement. An Eyring plot was constructed from which fundamental values for activation volumes and enthalpies were obtained. Full descriptions of the testing techniques used have been included and a brief photoelastic analysis has been carried out on a partially deformed specimen which shows molecular alignment.
368

Effect of boron on microstructure and mechanical properties of low carbon microalloyed steels

Lu, Yu, 1977- January 2007 (has links)
Low carbon bainitic steels microalloyed with Nb, Ti and V are widely used for the pipeline, construction and automobile industries because of their excellent combination of strength, toughness and weldability. Boron as another major alloying element has been also frequently used in this type of steels since the 1970s. The purpose of adding boron is to improve the hardenability of the steel by promoting bainite formation. / It has been realized that Boron can only be effective as a strengthening element when it is prevented from forming BN and/or Fe23(C, B) 6 precipitates. Therefore, Boron is always added together with other alloying elements which are stronger Nitride or Carbide formers, such as Ti and Nb. However, the formation of complex bainitic structures and the interaction with precipitates at industrial coiling temperature are not adequately understood. / In this study, the effect of boron on the microstructure and mechanical properties of a low carbon Nb-B steel was studied by a hot compression test (50% reduction at 850&deg;C) followed by quenching samples into a salt bath. The microstructures of the tested samples were examined through optical microscopy and SEM; and the mechanical properties of these samples were investigated by micro-hardness and shear punch tests. / The results indicate that during thermo-mechanical controlled rolling (TCR), the final properties of the products not only depend on the applied deformation but also depend on the coiling temperature where phase transformation takes place. According to the investigation, two strengthening mechanisms are responsible for the strength of the steel at the coiling temperature: phase transformation and precipitation. Under optical microscopy, the microstructures of all specimens appear to be bainite in a temperature range from 350&deg;C to 600&deg;C without distinct differences. However, the SEM micrographs revealed that the microstructures at 550&deg;C are very different from the microstructures transformed at the other holding temperatures. / Two strength peaks were observed at 350&deg;C and 550&deg;C in the temperature range studied. It is believed that the NbC precipitates are the main contributor to the peak strength observed at 550&deg;C because the kinetics of NbC is quite rapid at this temperature. The strength peak at 350&deg;C is mainly due to the harder bainitic phase, which formed at relatively lower temperature.
369

Effect of microstructure on static and dynamic mechanical properties of high strength steels

Qu, Jinbo, 1971- January 2007 (has links)
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. / A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
370

Morphological and mechanical characteristics of injection molded blends of poly(ethylene terephthalate) and poly(amide - 6,6)

Sahto, Mohammad Aslam. January 1983 (has links)
No description available.

Page generated in 0.0461 seconds