Spelling suggestions: "subject:"[een] MODE-LOCKED"" "subject:"[enn] MODE-LOCKED""
1 |
Tunable erbium doped fibre lasersGloag, Andrew John January 1996 (has links)
No description available.
|
2 |
Optically pumped vertical external cavity surface emitting semiconductor lasersHoogland, Sjoerd January 2003 (has links)
No description available.
|
3 |
Passively Mode-Locked Lasers Using Graphene Based Saturable AbsorberLin, Shau-Ching 01 August 2011 (has links)
The graphene-polymer SA thin film using solution blending method and atomic layer graphene as saturable absorber (SA) used to generate femtosecond laser pulse were measured. Stable soliton-like pulses with the pulsewidth of 403 fs and 432 fs, the spectral linewidth of 6.32 nm and 6.16 nm, and the time-bandwidth product of 0.315 and 0.329 using graphene-PVA film and atomic layer graphene as SA were achieved, respectively, in mode-locked Er-doped fiber ring laser. The graphene-PVA SA suffered from larger loss caused by graphene flake aggregating, while the atomic layer graphene had smaller nonsaturable loss which exhibited lower mode locking threshold power. Atomic layer graphene also had stable fabricated process and controllable modulation depth depended on its layer numbers.
To compare the mode locking performance of single wall carbon nanotubes (SWCNTs) and graphene SA, the same solution blending fabricated sample was used. Under similar nonsaturable loss and modulation depth, the SWCNTs SA with optimized concentration of 0.5wt% and thickness of 188£gm had shortest pulsewidth of 440 fs and 3-dB spectral linewidth of 6 nm. The shortest pulsewidth of 403 fs and broad spectral linewidth of 6.32 nm was obtained using graphene SA with concentration of 6.25wt% and thickness of 18£gm.
Graphene has broad band absorbance and larger modulation depth, the experimental result indicates that graphene SA can generate shorter pulse and has chance to become the potential candidate of SA.
|
4 |
Passively Mode-Locked Lasers Using Saturable Absorber Incorporating Dispersed Single-Wall Carbon NanotubesHaung, Zih-shun 09 July 2009 (has links)
The dependence of single-wall carbon nanotubes-based saturable absorber (SWCNTs SA) on concentration and thickness for mode-locked laser pulse formation is comprehensively investigated. The peak absorption wavelength of SWCNTs SA is engineered within the gain band-width of erbium-doped fiber centered near 1550 nm. The optima full-width half-maximum (FWHM) of pulses was obtained as the concentrations of SWCNTs SA was 0.05 wt%. This indicates that the laser pulse become shorter as the concentration of SWCNTs SA increases. The result also showed that the FWHM of pulses from 3.43 to 1.85 ps were found as the thickness of SWCNTs SA increased from 8 to 100 um. This also indicates that the laser pulse become shorter as the thickness of SWCNTs SA increases. However, the pulse width significantly broadened as concentration increased to 0.1 wt% and became stable as thickness of SWCNTs SA increased from 100 to 264 um for passively mode-locked lasers. An in-depth study on the optimum fabrication of concentration and thickness of SWCNTs SA for laser pulse formation may allow developing a cost-effective mode-locked laser with high performance as well as broadly benefit to the utilization of many other low-cost nanodevices.
|
5 |
Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data miningOzharar, Sarper. January 2008 (has links)
Thesis (Ph.D.)--University of Central Florida, 2008. / Adviser: Peter J. Delfyett, Jr. Includes bibliographical references (p. 123-130).
|
6 |
Streak camera analysis of dynamic characteristics of current modulated diode laser arrays /Hartnett, Kathleen A., January 1988 (has links)
Thesis (M.S.)--Oregon Graduate Center, 1988.
|
7 |
Generation and nonlinear propagation of ultrashort near infrared laser pulsesKean, Peter N. January 1990 (has links)
By utilising a CW mode-locked Nd:YAG pump laser an experimental study of self-phase modulation (SPM) and stimulated Raman scattering (SRS) in single mode optical fibres has been conducted. The dependence of the spectral broadening due to SPM upon the launched optical power was observed to obey a linear relationship in agreement with a simple theory. A deviation from this occurred for high input powers due to the onset of stimulated Raman scattering which caused a preferential depletion of the leading edge of the pump pulse and an increased spectral broadening to the long wavelength side of the spectrum. The pulses exiting the fibre were then compressed using a pair of holographic diffraction gratings, which were able to compensate for the linear part of the frequency chirp imposed on the pulse by SPM and the 1.06 ?m pulses were reduced in duration from ~ 100 ps to approximately 4 ps by this method. By making use of Raman generation in the fibre, a synchronously pumped fibre Raman oscillator was constructed. This enabled the generation of frequency tunable (1.07 - 1.12 ?m) near infrared pulses by the method of time dispersion tuning. By incorporating two fibre grating reflectors onto the ends of the optical fibre, an all-fibre device was constructed having the potential advantages of compactness and stability. The generation of mode-locked pulses around the 1.5 jim wavelength region was accomplished with the use of a colour centre laser based upon a stabilised F2+ centre in NaC1 or a thallium centre in KCl. Both of these lasers were examined, although to date the poor quality of our NaC1 laser crystals has meant that most of the work reported here was performed with KC1:T1. This laser produced pulses of ? 20 ps duration, tunable over 1.45 - 1.55 ?m with average powers ? 200 mW. A simple experiment to observe soliton propagation of these pulses in an optical fibre was conducted and this compressed the pulses to ? 0.8 ps, although this does not represent the optimum compression that could be achieved. Using nonlinear pulse propagation in an optical fibre, the mode-locked characteristics of the colour centre laser were dramatically improved with the duration of the pulses from the laser being reduced to ? 200 fs. This enhancement was achieved by the use of a nonlinear external cavity containing the optical fibre, which reinjected the pulses back into the main laser cavity, with an increased spectral bandwidth due to SPM. It was initially thought that the explanation to this effect was due to soliton formation within the control cavity, however experimental evidence is presented here which shows that the mode-locking enhancement phenomena is in fact quite general and does not rely on dispersion in the control cavity.
|
8 |
Ultrashort-pulse generation from quantum-dot semiconductor diode lasersCataluna, Maria Ana January 2008 (has links)
In this thesis, novel regimes of mode locking in quantum dot semiconductor laser diodes have been investigated by exploiting the unique features offered by quantum dots. Using an unconventional approach, the role of excited state transitions in the quantum dots was exploited as an additional degree of freedom for the mode locking of experimental quantum dot lasers. For the first time, passive mode locking via ground (1260nm) or excited state (1190nm) was demonstrated in a quantum dot laser. Picosecond pulses were generated at a repetition rate of 21GHz and 20.5GHz, for the ground and excited states respectively, with average powers in excess of 25mW. Switching between these two states in the mode-locking regime was achieved by changing the electrical biasing conditions, thus providing full control of the operating spectral band. A novel regime for mode locking in a quantum-dot laser was also investigated, where the simultaneous presence of cw emission in the excited-state band at high injection current levels, dramatically reduced the duration of the pulses generated via the ground state, whilst simultaneously boosting its peak power. This represents a radically different trend from the one typically observed in mode-locked lasers. From this investigation, it was concluded that the role of the excited state can not be neglected in the generation of ultrashort pulses from quantum-dot lasers. Stable passive mode locking of a quantum-dot laser over an extended temperature range (from 20ºC to 80ºC) was also demonstrated at relatively high output average powers. It was observed that the pulse duration and the spectral width decreased significantly as the temperature was increased up to 70ºC. The process of carrier escape in the absorber was identified as the main contributing factor that led to a decrease in the absorber recovery time as a function of increasing temperature which facilitated a decrease in the pulse durations. These results are shown to open the way for the ultimate deployment of ultra stable and uncooled mode-locked semiconductor diode lasers.
|
9 |
Photonic analog-to-digital coonversion using a robust symmetrical number systemFisher, Adam S. 06 1900 (has links)
A photonic analog-to-digital converter (ADC) based on a robust symmetrical number system (RSNS) was constructed and tested. The analog signal to be converted is used to amplitude modulate an optical pulse from a laser using three Mach-Zehnder interferometers (MZI). The Mach-Zehnder interferometers fold the input analog signal for a three-channel RSNS encoding. The folding waveforms are then detected and amplitude-analyzed by three separate comparator banks, the outputs of which are used to determine a digital representation of the analog signal. This design uses the RSNS preprocessing to encode the signal with the fewest number of comparators for any selected bit resolution. In addition to the efficiency of its use of comparators, the RSNS encoding has inherent Gray-code properties making it particularly attractive for eliminating any possible encoding errors. The RSNS encoding is combined with an optical infrastructure that offers high bandwidth and low insertion loss characteristics. A full implementation was constructed and tested. The lack of a high-speed data acquisition device limited the results to examining the preprocessing and digital processing separately. With the system integration of a data acquisition device, a wideband direct digital antenna architecture can be demonstrated.
|
10 |
General description and understanding of the nonlinear dynamics of mode-locked fiber lasersWei, Huai, Li, Bin, Shi, Wei, Zhu, Xiushan, Norwood, Robert A., Peyghambarian, Nasser, Jian, Shuisheng 02 May 2017 (has links)
As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.
|
Page generated in 0.0473 seconds