Spelling suggestions: "subject:"[een] NANOPARTICLES"" "subject:"[enn] NANOPARTICLES""
311 |
Core-shell functionalised carbon nanoparticles : synthesis, electrochemistry, and fluorescenceLawrence, Katherine January 2013 (has links)
Carbon nanoparticles constitute a class of important materials that have uses in many different fields. This thesis focuses on the synthesis and surface modification of different carbon nanoparticles and each novel nanomaterial is demonstrated to have a specific sensing application. Carbon blacks play a significant role in the research that is presented herein. Emperor 2000, a commercial bulk-produced carbon black available from Cabot Corporation, is the starting material for many of the investigations. The surface of Emperor 2000 is shown to be susceptible to physisorption, through π-π stacking. These interactions are exploited to append pyrene-based compounds onto the surface of the carbon nanoparticles. This methodology results in carbon nanoparticles with surface boronic acid functionality that is demonstrated to be affective in the electrochemical detection of catecholic caffeic acid. Emperor 2000 carbon nanoparticles are commercially produced with phenylsulphonic acid functional groups on the surface. This functionality is subjected to synthetic methods to obtain carbon nanoparticles with extremely hydrohphobic character, which are demonstrated as important substrates for probing lipophilic redox systems and lipid character under different experimental conditions. Fluorescent carbon nanodots (C-dots) are another important form of carbon nanoparticle. Herein, the facile synthesis of C-dots that possess intrinsic pyridine functionality is described. These nanodots exhibit two-photon fluorescence that is exhibited both in solution and in HeLa cells. The nanodots are demonstrated to have the potential to be developed into nanomedicines and biocompatible scaffolds for new drug delivery mechanisms. These straightforward synthesis, modification, and application methods demonstrate the effectiveness and the versatility of carbon nanoparticles. This class of nanomaterial is generally outclassed by modern and more fashionable carbon nanotubes and graphene-based systems. However, carbon nanoparticles are more cost effective and readily available carbon-based nanomaterials that can be used for a wide range of applications.
|
312 |
Thermal Physical Properties Of Nanocomposites Of Complex FluidsKalakonda, Parvathalu 31 May 2013 (has links)
"Composites of nanoparticles with complex fluids represent a unique physical system where thermal physical properties of the components partially or fully mix and new behavior can emerge. Traditional composites are relatively well understood as the superposition, weighted by volume or mass, of the components properties and the interfacial interactions play the role of holding the composite together. As the filler component, nanoparticle, decreases in size, the surface area begins to dominate, leading to unique behavior of the nanocomposites. The richness of the nanocomposites that can be designed by coupling various nanoparticles and complex fluid materials opens a wide field of active research. This dissertation presents a series of experimental studies on various nanocomposites using modulated differential scanning calorimetry, spectroscopic ellipsometry, dielectric spectroscopy, polarizing microscopy, and conductivity measurements of nanoparticles such as multi-wall carbon nanotubes and quantum dots on the phase transitions of several liquid crystals and polymers. The liquid crystals (LCs) and liquid crystalline polymer (LCP) of interest are: negative dielectric anisotropy alkoxyphenylbenzoate (9OO4), octylcyanobiphenyl (8CB), decylcyanobiphenyl (10CB), and isotactic polypropylene (iPP) which can form smectic liquid crystal (LC) phase. Studies have been carried out as a function of concentration and temperature spanning through various ordered phases. The results indicate a mixture of ordering and disordering effects of the nanoparticles on the phases of the complex fluids. In 9OO4/CNT system, dipole moment of liquid crystal and graphene like surface can allow a random dispersion of CNT to promote both orientational and positional order. For nCB/CNT, nCB/Quantum dot (QD) systems, nanoparticles induce net disordering effect in LC media. The effect of QDs on LC depends on the anchoring conditions and the QDs size. The results clearly demonstrate that the nematic phase imposes self-assembly on QDs to form one dimensional arrays. This leads to net disordering effect. The thermal/electrical conductivity changes in thin films of iPP/CNT sheared/un-sheared samples and it also varies with temperature for the purpose of inducing anisotropy of those properties in parallel and perpendicular to average orientation. The percolation threshold is clearly pronounced in both conductivities due to pressing and shearing treatment of the films. This will further our abilities to nano-engineer material for many important applications."
|
313 |
The application of low dimensional nanomaterials in electrocatalysis and electrochemical biosensingZhu, Zanzan 03 June 2015 (has links)
"Electrochemistry, based on the study of an electrochemical reaction at the interface between an electrode and an electrolyte, is having a profound effect on the development of different fields of science and engineering including battery, fuel cell, electrochemical sensor, electrochromic display, electrodeposition, electroplating, electrophoresis, corrosion, and so on. The performance of the electrochemical reaction depends strongly on the nature of the employed electrode such as structure, chemical composition, and surface morphology. Nanomaterials, notable for their extremely small feature size (normally in the range of 1-100 nm), exhibit new properties which are different from those of bulk materials due to their small size effect. In past decade, nanomaterials have been widely used to develop new strategies for designing electrode and its surface morphology for electrocatalysis and electrochemical sensing applications. My work is aimed at exploring the application of low dimensional nanomaterials (nanotubes and nanoparticles) in electrocatalysis and electrochemical biosensors. Electrocatalysis plays an important role in energy and industrial applications. As one of the most attractive support materials for electrocatalyst, carbon nanotubes have been extensively reported to enhance the performance of various electrochemical catalytic reactions. In recent years, carbon nanotubes with a bamboo-like structure due to nitrogen doping have become a hot topic of increased interest in the field of electrocatalysis because of the unique bamboo shaped structure associated properties. In this work, bamboo shaped carbon nanotubes, synthesized by chemical vapor deposition method, were investigated for ethanol/methanol electro-oxidation, respectively. Small sized platinum nanoparticles (Pt NPs) were dispersed onto BCNT surface through an impregnation method. The role of nitrogen doping in the formation of bamboo shaped structure and its effect in the electrochemical performance of CNTs were discussed. The electrochemical studies showed that the as-prepared Pt/BCNTs electrocatalysts indeed exhibited a remarkable enhancement in catalytic activity for methanol/ethanol oxidation compared to that of the Pt/commercial CNT electrocatalysts. In order to further investigate the potential of using BCNTs as bioelectrocatalyst support materials, a hybrid organic-inorganic nanocomposite film of BCNTs/ploymer was constructed to immobilize an enzyme horseradish peroxidase (HRP) to examine the direct electrochemical behavior of the enzyme towards electrocatalysis process of H2O2. The results indicated that the immobilized HRP onto the film retains its good bioelectrocatalytic activity to H2O2. The defective sites on the BCNTs surface induced by nitrogen doping could help to promote the direct electron transfer between enzyme and the electrode. The BCNT/polymer film structure provides a vast array of new opportunities to use BCNTs as building units for bioelectrochemical and biomedical applications. Compared to carbon nanotubes, TiO2 nanotubes have much better biocompatibility and show greater potential as implant materials. The advantages of TiO2 nanotube array include high biocompatibility, good corrosion resistance in biological environments and highly ordered one dimensional nanotubular geometry. Herein, a well performing non-enzymatic electrochemical glucose biosensor by using CuO nanoparticle decorated TiO2 nanotube array electrode was developed. Well-aligned TiO2 nanotube arrays were successfully synthesized by electrochemical anodization. Highly uniform CuO nanoparticles were electrodeposited onto TiO2 nanotube arrays through a two-step method and used to electrocatalyze the glucose oxidation. The proposed electrode produced a high sensitivity of 239.9 ìA mM-1 cm-2 and a low detection limit of 0.78 ìM with good stability, reproducibility, selectivity and fast response time, suggesting its potential to be developed as a low-cost nano-biosensor for glucose measurements in human fluids. The final work of this thesis presents a simple sandwich-type electrochemical impedance immunosensor with antitoxin heavy-chain-only VH (VHH) antibodies labeled gold nanoparticles as the amplifying probe for detecting Clostridium difficile toxins. Gold nanoparticles (Au NPs) with diameter of ~13-15 nm were synthesized and characterized by transmission electron microscopy and UV-vis spectra. The electron transfer resistance of the working electrode surface was used as parameter in the measurement of the biosensor. With the increase of the concentration of toxins from 1pg/mL to 100 pg/mL, a linear relationship was observed between the relative electron transfer resistance and toxin concentration. In addition, the detection signal was enhanced due to the amplification effect. This proposed method achieved a limit of detection for TcdA and TcdB as 0.61 pg/mL and 0.60 pg/mL, respectively. The pilot study with spiked clinical stool samples showed promising results, indicating the designed biosensor has a great potential in clinical applications."
|
314 |
Desenvolvimento de kits para rápido diagnóstico da dengue utilizando nanoparticulas de ouroBasso, Caroline Rodrigues. January 2019 (has links)
Orientador: Valber de Albuquerque Pedrosa / Resumo: Doenças tropicais são aquelas causadas por agentes infecciosos ou parasitas e consideradas endêmicas em populações na sua maioria de baixa renda, residente em países tropicais e subtropicais. Dentre essas doenças temos a dengue, que acomete milhares de pessoas levando a mortes todos os anos. A dengue é transmitida através da picada do mosquito contaminado e a movimentação populacional a torna de fácil disseminação em todo o território nacional. Atualmente, os exames para diagnóstico desta doença são realizados em laboratórios, principalmente testes sorológicos. Porém, esta metodologia apresenta como limitação o custo elevado além dos resultados levarem dias para que fiquem prontos. Por isso, se faz necessário o desenvolvimento de uma nova metodologia confiável e de baixo custo para um rápido diagnóstico. Atualmente, nanobiossensores vem se destacando como uma ferramenta analítica que pode identificar a presença de patógenos utilizando como base nanoestruturas. Logo, o objetivo do presente projeto foi desenvolver e padronizar uma nova metodologia para o diagnóstico rápido e eficaz do vírus da dengue, utilizando diferentes nanoestruturas modificadas com a deposição de anticorpos específicos e aptâmeros. As metodologias foram comparadas mediante as técnicas de ressonância plasmônica de superfície localizada, ressonância plasmônica de superfície, microscopia eletrônica de transmissão, espectroscopia de impedância eletroquímica, espalhamento dinâmico de luz e análise do software I... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Tropical diseases are those caused by infectious agents or parasites and are considered endemic in mostly low-income populations residing in tropical and subtropical countries. Among these diseases we have the dengue that causes thousands of deaths each year. Dengue is transmitted through the bite of the contaminated mosquito and the population movement makes it easily spread throughout the national territory. Currently, the diagnostic test of this disease is performed in laboratories, being serological tests. However this methodology presents as a limitation the higher cost and the delay for the result come out. Therefore, it is necessary to develop a new, reliable and low-cost methodology for rapid diagnosis. Nowadays, nanobiosensors have been highlighted with analytical tool that can identify the presence of pathogens using as base nanostructures. The objective of the present project was to develop and standardize a new methodology for a fast and effective diagnosis of dengue virus using using different nanostructures modified with the deposition of specific antibodies and aptamers. The methodology was compared by localized surface plasmon resonance, surface plasmon resonance, transmission electron microscopy, electrochemical impedance spectroscopy, dynamic light scattering techniques and ImageJ software analysis. The results obtained with the techniques presented some advantages over the traditional methods of detection, such as fast analysis and low cost, showing to be h... (Complete abstract click electronic access below) / Doutor
|
315 |
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other OxidesRodenbough, Philip Porter January 2016 (has links)
The short title of this dissertation is Size Matters. And it really does. Before diving into the original findings of this dissertation, this abstract starts by contextualizing their significance. To that end, recall that some of the earliest concepts learned by sophomore organic chemistry students include explaining physical properties based on carbon chain length, for example, and polymer length has enormous influence on macroscopic material properties. In the 1980s it was found that the electronic properties of small inorganic semiconductor crystallites can be rigorously tied to the physical size of the crystallites, and this understanding has led directly to the successful integration of so-called quantum dots into readily available technologies today, including flat screen televisions, as well as emerging technologies, such as quantum dot solar cells. Oxides, for their part, are important components of many technologies, from paints and cosmetics to microelectronics and catalytic converters. The crystallite size dependency of fundamental mechanical properties of oxides is the topic of this dissertation.
First, this dissertation reports that consistent preparation methods were used to produce batches of specific crystallite sizes for a diverse family of five cubic oxides: CeO2 (ceria), MgO (magnesia), Cu2O (cuprite), Fe3O4 (magnetite), and Co3O4. The size-based lattice changes for small crystallites was carefully measured with X-ray diffraction. Expanded lattice parameters were found in small crystallites of all five oxides (notably for the first time in Fe3O4). This behavior is rationalized with an atomic model reliant on differing coordination levels of atoms at the surface, and fundamental calculations of physical properties including surface stress and expansion energy are derived from the measured lattice expansion for these oxides.
Then, the size dependency of the pressure response in ceria nanoparticles was measured using diamond anvil cells and synchrotron radiation. In a study unmatched in its comprehensiveness, it was found that the bulk modulus of ceria peaked at an intermediate crystallite size of 33 nm. This is rationalized with a core-shell model with a size dependent shell compressibility whose influence naturally grows as crystallite size shrinks. Complimentary thermal expansion measurements were carried out to probe the structural response of crystallites to heat. Overall, the thermal expansion of ceria decreased with crystallite size. Through careful heating cycles, it was possible to separate out quantitatively the two primary factors contributing to negative surface stress in ceria: ambient surface adsorbents and surface non-stoichiometry. These may be the first instances of such a calculation that provides this insight into the surface stress of oxide nanoparticles.
Next, pressure and temperature studies parallel to those in ceria were carried out on magnesia as well. Magnesia is an important oxide to compare to ceria because it does not share ceria's tendency to form oxygen vacancy defects with cation charge variances. Nonetheless, magneisa was shown to possess a peak (albeit a less dramatic peak) in bulk modulus at an intermediate crystallite size, about 14 nm. Magnesia, like ceria, also had decreased thermal expansion at smaller crystallite sizes.
Finally, experiments on molecular oxygen exchange properties of a series of oxides were carried out using a thermocycling reactor system designed and built in-house, with the aim of developing materials to convert carbon dioxide to carbon monoxide. Experiments were carried out under 1200C, much lower than the 1500C typically required for ceria oxygen exchange. It is thought that crystallite morphology could play an important role in dictating the effectiveness of this catalytic process. The increased understanding of fundamental physical properties of oxide nanoparticles, as explored here, may lead to their more rational integration into such emerging technologies.
|
316 |
Modulation of inflammatory responses at mucosal surfaces by nanoparticle-based siRNA deliveryFrede, Annika January 2016 (has links)
In this thesis nanoparticles consisting of a calcium phosphate core encapsulated by poly(lactic-co-glycolic) acid and polyethylenimine were developed for the delivery of siRNA in vivo. The nanoparticles were efficiently endocytosed by different cell types in vitro without exhibiting cytotoxic characteristics. Without possessing endogenous immune response activating properties, the nanoparticles had a highly preferable composition for the delivery of siRNA and subsequent gene knockdown. The delivery of siRNA with nanoparticles was tested in two different murine disease models: DSS-induced colitis as model for human IBD and a TH1-induced lung inflammation as model for COPD. In IBD and COPD chemokines and cytokines are predominant players in the progression of the inflammatory response. The local interference of cytokine signalling mediated by siRNA-loaded nanoparticles might therefore be a promising new therapeutic approach. In both murine models, the aim was to deliver siRNA directed against inflammation related cytokines by nanoparticles for the local treatment of mucosal inflammation. The local administration of nanoparticles loaded with siRNA to mice suffering from intestinal or lung inflammation led to significantly decreased target gene expression on mRNA as well as protein level in biopsies from the target tissues. Furthermore, reduced cytokine levels were accompanied by diminished inflammatory pathologies and augmented clinical signs of sickness. The results of this thesis indicate that a specific and local modulation of inflammatory responses by nanoparticle-based siRNA delivery is feasible and demonstrates a major therapeutic potential.
|
317 |
Atom probe tomography research on catalytic alloys and nanoparticlesYang, Qifeng January 2018 (has links)
Catalyst is a key component in the chemical industry, with more than 90% of total chemical products reliant on their use. However, the working mechanisms are in many cases still not fully understood. For heterogeneous catalysts, in which the reactions normally occur on solid phase materials, a better understanding of the catalytic surfaces, and how they evolve under reactive environments is recognised as the next step forward in the field. This work presents a study utilising atom probe tomography (APT), combined with an in-situ reaction cell, to understand the initial oxidation processes of catalytic NiFe and NiCo model alloy systems. In order to improve reliability of results, a protocol was developed to clean the sample surfaces by field ion evaporation, eliminate sample surface contamination before in-situ oxidation was then performed. APT was successfully applied to these alloys to characterise oxide development as a function of exposure time and temperature. APT also demonstrated surface enrichment induced by oxide formation remained after reduction of the alloy. The successful application of APT on the model alloys led to the next goal which was to associate the data to real catalytic particles. To achieve this, work was extended into the field of nanoparticle catalysts. Nanoparticles with similar compositions to the model alloys were fabricated by chemical synthesis and were examined initially by transmission electron microscopy (TEM). The main goal of this phase was to investigate the surface segregation behaviour of the particles, identifying common behaviours with the model alloys. However, the presence of residual complex chemical environments around the particles following synthesis made APT analysis difficult. Therefore, an alternative method of particle fabrication was explored to better control the resulting materials for easier application of atom probe for nanoparticle analyses. Metallic nanoparticles of Ag, AuCu, AuNi, and AuNiMo were made by an inert gas condensation method, deposited on suitable support materials and were subsequently analysed by APT, facilitated by an improved sample preparation method. Surface segregation on individual nanoparticles was detected. Together with other complementary surface-probing techniques, a complete understanding of these particles from micrometre down to the level of individual particles was achieved. The potential for APT is highlighted to play a key role in this approach to realise a complete understanding of the chemical order, microstructure in multimetallic nanoparticles designed for catalysis.
|
318 |
Desenvolvimento de nanopartículas de PLA e PLA-PEG para administração intranasal de zidovudina /Mainardes, Rubiana Mara. January 2007 (has links)
Orientador: Maria Palmira Daflon Gremião / Banca: Raul Cesar Evangelista / Banca: Leila Aparecida Chiavacci / Banca: Célio Lopes Silva / Banca: Marco Vinícius Chaud / Resumo: A zidovudina (AZT) é um fármaco amplamente usado no tratamento da síndrome da imunodeficiência adquirida. O AZT apresenta baixa biodisponibilidade oral pois sofre rápido e extenso metabolismo de primeira passagem hepática, além de curto t1/2. Sendo assim, altas e freqüentes doses são requeridas para se manter concentrações plasmáticas efetivas e, dessa maneira, apresenta graves efeitos colaterais, dose-dependentes, que limitam o seu uso em determinados tipos de pacientes. As nanopartículas são eficientes sistemas poliméricos que contribuem para a redução da toxicidade de fármacos, pois são capazes de liberá-los de maneira prolongada, proporcionando maior tempo de contato do fármaco com o plasma e tecidos. A via de administração intranasal é uma rota interessante, quando se deseja evitar o metabolismo de primeira passagem e, também, pode oferecer um ótimo perfil de absorção para nanopartículas. Neste trabalho, estudouse a incorporação de AZT em nanopartículas de PLA e de blendas de PLA-PEG com diferentes razões molares. A caracterização físico-química demonstrou que a presença do PEG influenciou a forma, o diâmetro médio, a eficiência de encapsulação, assim como o potencial de superfície das partículas. O diâmetro médio e a eficiência de encapsulação das nanopartículas aumentaram com o aumento crescente da razão molar de PEG na blenda. A forma geral e a apresentação das partículas variaram em função da concentração de PEG, sendo que os melhores resultados foram obtidos com as menores razões molares deste na blenda. Os experimentos de liberação in vitro mostraram que a liberação do AZT a partir das nanopartículas foi mais lenta em relação ao AZT em solução. A presença do PEG nas nanopartículas alterou o perfil de liberação do AZT, tornando...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Zidovudine (AZT) is a drug widely used in the treatment of acquired immunodeficiency syndrome. AZT shows low bioavailability because it suffers fast and extensive by pass hepatic metabolism, besides of low t1/2. High and frequent doses are requested to achieve effective plasmatic concentrations, and thus, it shows serious and dosedependents side effects that limit its use in certain kind of patients. Nanoparticles are efficient polymeric systems that contributes to reduce the drug toxicity, because maintain prolonged drug release, making longer the contact between drug and plasma/tissues. The intranasal way is a very interesting route to avoid the by pass metabolism, and also offers a great absorption profile to nanoparticles. In the present work, the AZT encapsulation in PLA e PLA-PEG blends nanoparticles was studied. The physico-chemical characterization showed that the presence of PEG influences the nanoparticles shape, mean diameter, encapsulation efficiency and superficial charge. The mean diameter and encapsulation efficiency increase with increasing PEG proportion in the blend. The nanoparticles shape varied in function of PEG concentration, the better results being obtained with the lowest PEG concentration. In vitro experiments showed that AZT release from nanoparticles was slower than that of AZT solution. The presence of PEG in nanoparticles altered the AZT release profile, making it faster than that from PLA nanoparticles. The ex vivo phagocytosis experiments demonstrated that PLA-PEG blends nanoparticles were more efficient in avoiding the activation of phagocytic cells. The intranasal bioavailability in rats shows that blend PLA-PEG nanoparticles demonstrated longer plasmatic circulating times than that those make of PLA alone. These results demonstrate that PLA and PLA-PEG blends nanoparticles can be used as an efficient intranasal drug delivery system. / Doutor
|
319 |
Novas estratégias no estudo da eletro-oxidação de etanol : nanocatalisadores multimetálisos e análises dos produtos de reação /Santos, Nathalia Abe. January 2013 (has links)
Orientador: Hebe de las Mercedes Villullas / Banca: Margarida Juri Saeki / Banca: Giuseppe Abíola Câmara da Silva / Resumo: Nesse trabalho foi realizado um estudo comparativo das propriedades físicas e eletrônicas e das atividades catalíticas para a oxidação de etanol de nanopartículas bi e trimetálicas suportadas em pó de carbono. Para a obtenção dos catalisadores as nanopartículas foram preparadas inicialmente em estado coloidal pelo método de poliol e posteriormente suportadas em carbono (Vulcan XC-72), utilizando quantidades adequadas para obter catalisadores com composição metal:carbono de 20:80 (em massa). Nanopartículas dos sistemas binários e ternários PtSn, PtRh, PtRu, PtSnRu e PtSnRh com composições atômicas nominais 70:30 e 70:15:15, respectivamente, foram preparadas misturando-se os precursores metálicos no início da síntese. Os sistemas ternários PtSn-PtRh e PtSn-PtRu foram sintetizados pela mistura de nanopartículas bimetálicas em estado coloidal antes da etapa de suporte em carbono. Os catalisadores foram caracterizados por difração de raios X (DRX), microscopia eletrônica de transmissão (TEM) e espectroscopia de absorção de raios X (DXAS). O comportamento eletroquímico geral dos catalisadores foi avaliado por voltametria cíclica em solução de H2SO4 (0,5 mol L-1). A atividade catalítica para a oxidação de etanol foi avaliada por varreduras de potencial e cronoamperometria em solução ácida de etanol (0,5 mol L-1). Para a avaliação das áreas dos catalisadores foram realizadas medidas de oxidação de CO adsorvido. Experimentos de espectroscopia no infravermelho in situ (FTIRAS in situ) foram realizados para verificar a distribuição dos produtos da reação de oxidação de etanol. O estudo mostrou que os catalisadores têm atividades catalíticas significativamente diferentes tanto para a oxidação de etanol quanto para a oxidação de CO adsorvido, sendo o material PtSn/C o mais ativo para... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work, a comparative study of physical and electronic properties and catalytic activities for ethanol oxidation of carbon-supported binary and ternary metallic nanoparticles was carried out. For the catalysts, the nanoparticles were initially synthesized in colloidal state by a polyol method and subsequently supported on carbon powder (Vulcan XC-72) in amounts adequate to obtain catalysts with nominal composition metal:carbon 20:80 (in mass). The nanoparticles of the binary and ternary systems PtSn, PtRh, PtRu, PtSnRu and PtSnRh with nominal atomic compositions 70:30 and 70:15:15, respectively, were prepared from the mixture of the metal precursors at the beginning of the synthesis. The ternary systems PtSn-PtRh and PtSn-PtRu were synthesized by mixing the binary nanoparticles in colloidal state before the supporting step. The catalysts were characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and Dispersive X-ray absorption spectroscopy (DXAS). The general electrochemical behavior was evaluated by cyclic voltammetry in H2SO4 solution (0.5 mol L-1). The catalytic activity for ethanol oxidation was evaluated by potential sweeps and chronoamperometry in acid solutions of ethanol (0.5 mol L-1). Experiments of oxidation of adsorbed CO were done for the evaluation of the catalysts active areas. Infrared spectroscopy (FTIRAS in situ) measurements were performed to study the product distribution of the ethanol oxidation reaction. All these studies showed that the catalysts have catalytic activities substantially different for ethanol oxidation reaction as well as for the oxidation of adsorbed CO, and that while the PtSn/C catalyst is the most active for ethanol oxidation PtSnRh/C and PtSnRu/C are more effective for CO oxidation. FTIRAS measurements evidenced formation of adsorbed CO for PtRh/C indicating... (Complete abstract click electronic access below) / Mestre
|
320 |
Synthesis, characterization and anticancer effects of quantum dots in neuroblastoma and glioblastoma cell linesLasher, Sashca Yosima January 2018 (has links)
>Magister Scientiae - MSc / Introduction: Nanoparticles (NPs) are gaining increased popularity for cancer treatment,
especially the multifunctional nanoparticles like Quantum dots (QDs) which have a wide range of
applications in nanotheranostics, cell imaging and targeted drug delivery to cancerous tissue. QDs
comprise of very tiny crystals of a semiconductor material (diameter: 2-10 nm) capable of
producing bright, intensive and size-tuneable near-infrared fluorescence emissions. In particular,
3-mercaptopropionic acid -capped Cadmium Telluride Quantum Dots with a zinc sulphide shell
(MPA-capped CdTe/ZnS QDs), are known to be very stable, highly photoluminescent, less toxic
with long-lasting “fluorophore” effects, thus making them the preferred QDs for this study.
Aims: To synthesize and characterize biocompatible MPA-capped CdTe/ZnS QDs to determine
size range, polydispersity index (PdI), zeta (ζ) potential, photoluminescence (PL) spectra, stability
in various milieus as well as to evaluate the effects of the synthesized QDs on the viability and
morphology of neuroblastoma (NB) and glioblastoma (GB) cell lines using the WST-1 cell
viability assay, imaging and cell cycle analysis.
Materials and methods: MPA-capped CdTe/ZnS QDs were synthesized and analysed with the
Zetasizer to determine ζ-potential, hydrodynamic (hd) size and PdI, while high resolutiontransmission
electron microscopy (HR-TEM) was used to validate the hd size and elemental
composition using energy dispersive X-ray (EDX) spectra. Pl absorption and emission spectra
were obtained with a fluorometer and stability studies were done using UV-Vis spectroscopy,
permitting further biological evaluation. A concentration range of 5-20μg/ml QDs was exposed to
U87 and SH-SY5Y cancer cell lines to determine biological effects at different time points, using
the WST-1 assay. Confocal fluorescence microscopy was used to establish uptake and cellular
localization of the QDs, cell morphology was visualized with an inverted microscope while cell
cycle distribution analysis was done using the C6 flow cytometer.
|
Page generated in 0.2119 seconds