• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 208
  • 179
  • 53
  • 27
  • 20
  • 12
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 945
  • 945
  • 417
  • 235
  • 189
  • 155
  • 155
  • 149
  • 140
  • 124
  • 122
  • 110
  • 87
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Navier-Stokes prediction of the three dimensional flowfield of jets in a crossflow using the finite element method

Oh, Tae Shik January 1988 (has links)
A Prandtl-type eddy viscosity model including the first-order effect of turbulence structure has been developed to deal with curved free-shear flows. The model is generalized to account for the effect of arbitrary cross-section of the jets injected from a various nozzle configurations into a uniform crossflow. The model is implemented as a module of a general purpose finite-element computer code. The finite-element procedures used here follow from a Galerkin type variational formulation with the penalty approximation for pressure in a consistent manner, with which a significant savings in computational time and storage are achieved. In order to simulate complicated 3-D turbulent flow with a restricted computational space and modest mesh, a slip condition is employed to model the wall flow and stress-free conditions are used for the farfield and outflow boundaries. Numerical predictions are performed for three problems: a single circular jet in a crossflow, a single streamwise aligned rectangular (aspect ratio 4) jet in a crossflow, and dual side-by-side rectangular jets in a crossflow, all at a jet-to-crossflow velocity ratio 4, which is important for V/STOL and other applications. The prediction of the mean velocity components of the circular jet case is in excellent agreement with the measured data except for the near wall region. The surface pressure comparison is very good except for the viscous wake region right behind the nozzle due to flow separation. The current pressure prediction is as good as any inviscid solution given by singularity or panel method with empirically tuned jet properties. No mean flowfield comparison is made for the single rectangular jet case due to the lack of available measured data. Surface pressure comparison is consistently very good, especially for the region near the front corners of the nozzle where the large negative peaks appear. The agreement for this case seems to be even better than the circular jet case, and the reason is, as observed in the surface velocity vector plot, the different vortex structure and mixing in the vicinity of the nozzle. For the dual jets case, the surface pressure prediction is still in a very good agreement, and the mean velocity comparison shows better agreement as the mesh is refined. The flowfield is found to be more complicated than the circular jet case due to the jet interaction, and further mesh refinement is needed for the complete resolution of the jet/wake flowfield. However, if the surface pressure prediction is the major concern, as in the V/STOL applications, the current size of computational space along with numerical strategies adopted here can serve that purpose effectively. Finally, the mean velocity and the pressure prediction obtained here for rectangular jet(s) are the first known to this author, and will provide useful information for the 3-D, complex, turbulent, free shear flow computations. / Ph. D.
512

Finite element solution of the Navier-Stokes equations for 3-D turbulent free shear flows

Pelletier, Dominique H. January 1984 (has links)
A half-equation model of turbulence has been developed to described the eddy viscosity distribution of two and three-dimensional turbulent free shear flows. The model is derived by integrating the parabolized transport equation for the turbulence kinetic energy over the cross section of the flow. The Prandtl-Kolmogrov hypothesis is used to obtain an ordinary differential equation for the eddy viscosity. The model is used in a general purpose finite element procedure using primitive variables. The penalty function method is used, in a generalized Galerkin weak formulation of the Navier-Stokes equations, to enforce the conservation of mass. In this procedure the pressure does not explicitly appear, this significantly reducing the computation time when compared to the velocity-pressure approach. Numerical solution are obtained for four problems: a round jet issuing from a wall into still surroundings, a three-dimensional square jet issuing from a wall into still surroundings, a uniform flow past a free running propeller, and a shear flow past a free running propeller. An actuator disk with variable radial distribution of thrust and torque is used to model the propeller. The numerical solution in the far field of the round jet agrees very well with the analytical similar solution. Very good agreement between prediction and experiments is observed for the square jet problem. A simplified analysis of the flow past a propeller is used to provide the initial value of the eddy viscosity. Numerical experiments on the uniform flow past a thrusting disk confirmed the validity of the analysis and illustrated the effect of the initial value of the initial value of the eddy viscosity. For both propeller flows, agreement between predictions and experiments is excellent for both the axial and swirl velocity components at two stations located at x/D = 0.025 and 0.23. The quality of the swirl prediction is a major improvement over previous analyses. Pressure predictions are obtained for the first time, and are in reasonable agreement with the experiments. The radial velocity prediction is in fair agreement with the experiments at the station x/D = 0.025 .The discrepancy between the finite element solutions and the experiments at the station x/D = 0.23, for the pressure an the radial velocity are attributed to the presence of the body housing the propeller drive train. The body is not included in the present study. The complex three-dimensional nature of the shear flow past the propeller is very well captured in the simulation. / Doctor of Philosophy
513

Une méthode d'éléments finis mixtes duale raffinée pour le couplage des équations de Navier-Stokes et de la chaleur

Brahmi, Ahcène 12 April 2018 (has links)
Ce travail est consacré à l'étude du couplage des équations de Navier-Stokes et de la chaleur posées dans un domaine polygonal non convexe. Après avoir analysé le comportement singulier des solutions de ces équations près des coins du domaine considéré, nous présentons une formulation mixte duale de ces équations basée sur l'introduction de deux nouvelles inconnues : a qui est le tenseur gradient de la vitesse et le champ vectoriel ^ qui désigne le gradient de la température. Ensuite, en considérant une famille de maillage Th du domaine fi, nous analysons une méthode d'éléments finis mixte duale basée sur cette dernière formulation en utilisant l'élément fini de Raviart-Thomas de plus bas degré pour approximer les nouvelles inconnues cr et <^ sur chaque triangle K de la triangulation Th. Tandis que les variables n, p et T seront approximées par des polynômes de degré zéro sur chaque triangle K. En particulier, nous montrons que l'on peut retrouver l'ordre de convergence quasi-optimal si le maillage est raffiné suivant certaines règles qui sont essentiellement celles introduites par G. Raugel et basées sur le fait que les solutions sont régulières dans des espaces de Sobolev à poids. Nous discutons les aspects d'implémentation de la méthode d'éléments finis mixte duale raffinée pour ces équations en utilisant un algorithme de point fixe combiné à une formulation hybride de deux systèmes issus du découplage du problème discret : l'un correspondant aux équations de Navier-Stokes et l'autre à l'équation de la chaleur. Nos résultats numériques obtenus, en plus de confirmer l'ordre de convergence optimal pour un problème test posé dans un domaine polygonal non convexe, sont tout-à-fait comparables avec ceux existants dans la littérature pour la convection naturelle dans une cavité carrée.
514

Aeroelasticity of wings coupling Navier-Stokes aerodynamics with wing-box finite elements

MacMurdy, Dale E. January 1994 (has links)
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed. / M.S.
515

Étude de la simulation d'écoulement sanguin dans une artère sténosée

Bakkali Issaui, Halima 25 March 2024 (has links)
Titre de l'écran-titre (visionné le 6 novembre 2023) / Le but est d'étudier l'athérosclérose comme une application de la mécanique des fluides qui porte sur l'écoulement sanguin dans une artère sténosée. Le sang et la forme de l'accumulation des graisses sur la paroi artérielle jouent un rôle fondamentale dans le comportement de l'écoulement. Pour se mettre dans le cadre mathématique, un survol sur la mécanique des fluides permet d'obtenir la formulation de Navier-Stokes que l'on résout numériquement à l'aide des schémas de projection. L'adaptation de maillage est un outil numérique performant pour un tel type de calcules. Les conditions aux limites en pression à l'entrée et à la sortie de l'artère sont plus recommandés pour ce type de problèmes, mais leurs insertion exige des espaces d'interpolation particuliers que l'on explore en parcourant la littérature correspondante.
516

Résolution de problèmes aux limites à l'aide de méthodes itératives hiérarchiques à préconditionneur variable

El Maliki, Abderrahman 12 April 2018 (has links)
L'objectif des travaux présentés dans la thèse concerne la résolution par itérations de systèmes algébriques à grande échelle. Ces systèmes sont issus de la discrétisation par éléments finis de problèmes aux limites. Dans la majorité des cas en 3D, la phase de résolution s'avère l'étape la plus exigeante en terme de ressources informatiques. Ainsi, il est impératif de développer des méthodes itératives efficaces et robustes pour un large éventail de problèmes aux limites. Dans cette thèse, nous nous plaçons dans le cadre des méthodes itératives de Krylov à préconditionneur variable, c'est-à-dire autorisant une flexibilité au niveau du choix du préconditionnement en cours d'itération. Nous visons principalement des problèmes de type convection-diffusion, d'élasticité et de Navier-Stokes discrétisés par des éléments finis quadratiques. Afin de réduire les coûts inhérents aux éléments quadratiques, nous proposons une méthode de résolution multi-niveaux basée sur la hiérarchie naturelle entre les éléments finis linéaires et quadratiques d'où le nom de méthode hiérarchique. Elle possède plusieurs points en commun avec les méthodes multi-grilles mais a l'avantage de s'appliquer aux géométries complexes et aux maillages non-structures. L'utilisation de cette méthode comme préconditionneur à une méthode de Krylov à préconditionneur variable permet d'obtenir une méthode très efficace. L'autre partie de la thèse, concerne la résolution globale et itérative des systèmes de type point selle. Ces systèmes proviennent de la discrétisation des équations linéarisées du problème de Navier-Stokes. La résolution efficace de ces systèmes joue un rôle majeur dans le traitement numérique des équations de Navier-Stokes. Pour cela, nous avons mis en place un préconditionneur adroite de format triangulaire par bloc. Pour rendre ce préconditionneur efficace, nous avons fait appel à trois ingrédients : l'ajout du terme rV(div(u)) aux équations continues de Navier-Stokes, une résolution efficace en vitesse par la méthode hiérarchique et une bonne approximation du complément de Schur. Nos tests numériques montrent l'efficacité des méthodes présentées dans ce travail.
517

Études théorique et numérique de divers écoulements en couche mince

Dieme, Michel 18 April 2018 (has links)
Les écoulements en milieu peu profond sont en général modélisés par les équations de Navier-Stokes incompressibles dans un domaine dont une des frontières, en l'occurrence la surface du fluide, est elle même une inconnue du problème. On peut penser notamment aux rivières et fleuves, ainsi qu'aux écoulements côtiers et aux atmosphères planétaires. En réalité tous les fluides sont compressibles, certains plus que d'autres. Il est naturel, malgré la complexité des modèles établis notamment par leur forte non linéarité de s'intéresser à leur forme en tenant compte de la variabilité de la densité. Le travail présenté dans cette thèse s'articule autour de deux parties indépendantes. La première concerne une étude théorique d'un modèle unidimensionnel d'écoulement compressible, comprenant sa dérivation à partir des équations de Navier-Stokes, suivie de la démonstration d'un résultat d'existence de solutions faibles globales pour ce système. La seconde partie est consacrée à une analyse de Fourier de la discrétisation spatio-temporelle d'un modèle bidimensionnel d'écoulement à faible profondeur. Cette analyse met en oeuvre trois types de discrétisation en espace (P0 - P1 P1NC - P1 et RT0 — P0) combinés chacun à cinq types de discrétisation en temps qui sont : Euler Implicite (El), Euler Explicite (EE), Crank-Nicolson (CN), Adams-Bashforth d'ordre 2 (AB2) et 3 (AB3).
518

Rayleigh-Bénard convection: bounds on the Nusselt number / Rayleigh-Bénard Konvektion: Schranken an die Nusselt-Zahl

Nobili, Camilla 28 April 2016 (has links) (PDF)
We examine the Rayleigh–Bénard convection as modelled by the Boussinesq equation. Our aim is at deriving bounds for the heat enhancement factor in the vertical direction, the Nusselt number, which reproduce physical scalings. In the first part of the dissertation, we examine the the simpler model when the acceleration of the fluid is neglected (Pr=∞) and prove the non-optimality of the temperature background field method by showing a lower bound for the Nusselt number associated to it. In the second part we consider the full model (Pr<∞) and we prove a new upper bound which improve the existing ones (for large Pr numbers) and catches a transition at Pr~Ra^(1/3).
519

Large Eddy Simulations of Complex Flows in IC-Engine's Exhaust Manifold and Turbine

Fjällman, Johan January 2014 (has links)
The thesis deals with the flow in pipe bends and radial turbines geometries that are commonly found in an Internal Combustion Engine (ICE). The development phase of internal combustion engines relies more and more on simulations as an important complement to experiments. This is partly because of the reduction in development cost and the shortening of the development time. This is one of the reasons for the need of more accurate and predictive simulations. By using more complex computational methods the accuracy and predictive capabilities are increased. The disadvantage of using more sophisticated tools is that the computational time is increasing, making such tools less attractive for standard design purposes. Hence, one of the goals of the work has been to contribute to assess and improve the predictive capability of the simpler methods used by the industry. By comparing results from experiments, Reynolds Averaged Navier-Stokes (RANS) computations, and Large Eddy Simulations (LES) the accuracy of the different computational methods can be established. The advantages of using LES over RANS for the flows under consideration stems from the unsteadiness of the flow in the engine manifold. When such unsteadiness overlaps the natural turbulence the model lacks a rational foundation. The thesis considers the effect of the cyclic flow on the chosen numerical models. The LES calculations have proven to be able to predict the mean field and the fluctuations very well when compared to the experimental data. Also the effects of pulsatile exhaust flow on the performance of the turbine of a turbocharging system is assessed. Both steady and pulsating inlet conditions are considered for the turbine case, where the latter is a more realistic representation of the real flow situation inside the exhaust manifold and turbine. The results have been analysed using different methods: single point Fast Fourier Transforms (FFT), probe line means and statistics, area and volume based Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). / Denna avhandling behandlar flödet i rörkrökar och radiella turbiner som vanligtvis återfinns i en förbränningsmotor. Utvecklingsfasen av förbränningsmotorer bygger mer och mer på att simuleringar är ett viktigt komplement till experiment. Detta beror delvis på minskade utvecklingskostnader men även på kortare utevklningstider. Detta är en av anledningarna till att man behöver mer exakta och prediktiva simuleringsmetoder. Genom att använda mer komplexa beräkningsmetoder så kan både nogrannheten och prediktiviteten öka. Nackdelen med att använda mer sofistikerade metoder är att beräkningstiden ökar, vilket medför att sådana verktyg är mindre attraktiva för standardiserade design ändamål. Härav, ett av målen med projektet har varit att bidra med att bedöma och förbättra de enklare metodernas prediktionsförmåga som används utav industrin. Genom att jämföra resultat från experiment, Reynolds Averaged Navier-Stokes (RANS) och Large Eddy Simulations (LES) så kan nogrannheten hos de olika simuleringsmetoderna fastställas. Fördelarna med att använda LES istället för RANS när det gäller de undersökta flödena kommer ifrån det instationära flödet i grenröret. När denna instationäritet överlappar den naturligt förekommande turbulensen så saknar modellen en rationell grund. Denna avhandling behandlar effekten av de cykliska flöderna på de valda numeriska modellerna. LES beräkningarna har bevisats kunna förutsäga medelfältet och fluktuationerna väldigt väl när man jämför med experimentell data. Effekterna som den pulserande avgasströmning har på turboladdarens turbin prestanda har också kunnat fastställas. Både konstant och pulserande inlopps randvillkor har används för turbinfallet, där det senare är ett mer realistiskt representation av den riktiga strömningsbilden innuti avgasgrenröret och turbinen. Resultaten har analyserats på flera olika sätt: snabba Fourier transformer (FFT) i enskilda punkter, medelvärden och statistik på problinjer, area och volumsbaserade metoder så som Proper Orthogonal Decomposition (POD) samt Dynamic Mode Decomposition (DMD). / <p>QC 20140919</p>
520

Développement d'une méthode de simulation de films liquides cisaillés par un courant gazeux / Development of a method for simulating liquid films sheared by a turbulent gas stream

Adjoua, Serge 13 July 2010 (has links)
La distillation est un procédé industriel de séparation de phases qui fait typiquement intervenir un écoulement diphasique caractérisé par un film liquide laminaire ou faiblement turbulent s'écoulant par gravité et cisaillé à contre-courant par un courant gazeux turbulent. Afin de comprendre la dynamique de ce genre d'écoulements, nous avons développé un modèle numérique de simulation d'écoulements diphasiques prenant en compte la présence éventuelle des structures turbulentes. Ce modèle s'appuie sur un couplage entre les méthodologies Volume of Fluid sans étape de reconstruction pour le suivi d'interface et la simulation des grandes échelles pour le traitement de la turbulence. Les contraintes de sous-maille sont évaluées par une approche dynamique mixte, ce qui permet au modèle de s'adapter aux caractéristiques locales de la turbulence et de fonctionner même dans des zones laminaires. Le modèle développé est ensuite testé en simulant différentes configuration d'écoulements de films liquides cisaillés ou non par un courant gazeux. / Distillation is an industrial process of phase separation which involves a two-phase flow characterized by a laminar or weakly turbulent gravity- riven liquid film sheared by a countercurrent turbulent gas stream. To understand the dynamics of such flows, we developed a numerical technique aimed at computing incompressible turbulent two-phase flows. A large eddy simulation (LES) approach based on a dynamic mixed model is used to compute turbulence while the two-phase nature of the flow is described through a Volume of Fluid (VOF) approach with no interface reconstruction step. The use of a dynamic mixed approach for modelling the subgrid stresses allows the developed model to self-adapt to local characteristics of turbulence, so that it also works in laminar flows. The whole methodology is then applied to the computation of different configurations of liquid films sheared or not by a gas stream.

Page generated in 0.0534 seconds