• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 83
  • 46
  • 45
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 701
  • 131
  • 81
  • 77
  • 70
  • 63
  • 63
  • 60
  • 55
  • 48
  • 45
  • 45
  • 44
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

EXPERIMENTS AND MODELING OF WALL NUCLEATION IN SUBCOOLED BOILING FLOW

Yang Zhao (13123728) 20 July 2022 (has links)
<p>To improve the prediction of two-phase local structure and heat transfer in subcooled boiling flow, the wall nucleation phenomenon was studied to accurately model the wall source term in the interfacial area transport equation (IATE) for the use with the two-fluid model. The existing experimental datasets and modeling works of departure diameter, departure frequency and active nucleation site density were comprehensively reviewed. Since these parameters are coupled in the bubble ebullition cycles, simultaneous measurements of departure diameter, departure frequency and active nucleation site density were performed in a vertical annular test section. The ranges of the existing experimental database were extended to high pressure and high heat flux conditions. The stochastic characteristics of the departure diameter and departure frequency measured from a single nucleation site and over multiple nucleation sites were investigated. Significant variations between different nucleation sites were observed. A parametric study of departure diameter, departure frequency and nucleation site density were conducted at varying system pressure, heat flux, flow rate and subcooling conditions. The existing models of these parameters were evaluated with the experimental dataset of the existing and the present works. Significant discrepancies were observed between model predictions and experimental data, which indicates that the mechanism of nucleate boiling is not fully understood. The heat flux partitioning model was also evaluated. The results show that the heat flux at high pressure or low flow rate conditions was significantly underestimated. This may suggest that major heat transfer mechanisms are missing in the heat flux partitioning model.</p>
252

Energetics and Kinetics of Dislocation Initiation in the Stressed Volume at Small Scales

Li, Tianlei 01 December 2010 (has links)
Instrumented nanoindentation techniques have been widely used in characterizing mechanical behavior of materials in small length scales. For defect-free single crystals under nanoindentation, the onset of elastic-plastic transition is often shown by a sudden displacement burst in the measured load-displacement curve. It is believed to result from the homogeneous dislocation nucleation because the maximum shear stress at the pop-in load approaches the theoretical strength of the material and because statistical measurements agree with a thermally activated process of homogeneous dislocation nucleation. For single crystals with defects, the pop-in is believed to result from the sudden motion of pre-existing dislocations or heterogeneous dislocation nucleation. If the sample is prestrained before nanoindentation tests, a monotonic decrease of the measured pop-in load with respect to the increase of prestrain on Ni and Mo single crystals is observed. A similar trend is also observed that the pop-in load will gradually decrease if the size of indenter tip radius increases. This dissertation presents a systematic modeling endeavor of energetics and kinetics of defect initiation in the stressed volume at small scales. For homogeneous dislocation nucleation, an indentation Schmid factor is determined as the ratio of maximum resolved shear stress to the maximum contact pressure. The orientation-depended nanoindentation pop-in loads are predicted based on the indentation Schmid factor, theoretical strength of the material, indenter radius, and the effective indentation modulus. A good agreement has been reached when comparing the experimental data of nanoindentation tests on NiAl, Mo, and Ni, with different loading orientations to theoretical predictions. Statistical measurements generally confirm the thermal activation model of homogeneous dislocation nucleation, because the extracted dependence of activation energy on resolved shear stress is almost unique for all the indentation directions. For pop-in due to pre-existing defects, the pop-in load is predicted to be dependent on the defect density and the critical strength for heterogeneous dislocation nucleation. The cumulative probability of pop-in loads contains convoluted information from the homogenous dislocation nucleation, which is sensitive to temperature and loading rate, and heterogeneous dislocation nucleation due to the unstable change of existing defect network, which is sensitive to the initial defect distribution.
253

X-Ray Crystallographic Studies Of Designed Peptides : Characterization Of Self-Assembled Peptide Nanotubes With Encapsulated Water Wires And β-Hairpins As Model Systems For β-Sheet Folding

Raghavender, U S 07 1900 (has links) (PDF)
The study of synthetic peptides aid in improving our current understanding of the fundamental principles for the de novo design of functional proteins. The investigation of designed peptides has been instrumental in providing answers to many questions ranging from the conformational preferences of amino acids to the compact folded structures and also in developing tools for understanding the growth and formation of the protein secondary structures (helices, sheets and turns). In addition, the self-assembly of peptides through non-covalent interactions is also an emerging area of growing interest. The design of peptides which can mimic the protein secondary structures relies on the use of stereochemically constrained amino acid residues at select positions in the linear peptide sequences, leading to the construction of protein secondary structural modules like helices, hairpins and turns. The use of non-coded amino acid residues with strict preferences for adopting particular conformations in the conformational space becomes the most crucial step in peptide design strategies. In addition the crystallographic characterization and analysis of the sequences provides the necessary optimization of the design strategies. The crystallographic characterization of designed peptides provides a definitive and conclusive proof of the success of a design strategy. Furthermore, the X-ray structures provide an atomic view of the interactions, both strong and weak, which govern the growth of the crystal. The information on the geometric parameters and stereochemical properties of a series of peptides, through a systematic study, provides the necessary basis for further scientific investigation, like the molecular dynamics and can also aid in improving the force field parameters meant for carrying out molecular simulations. This can be further complemented by constructing biologically active peptide sequences. The focus of this thesis is to characterize crystallographically the conformational and structural aspects of peptide nanotubes and encapsulated water wires and the β-hairpin peptide models of β-sheets. The systematic study of a series of pentapeptide and octapeptide sequences, containing Aib and D-amino acid residues incorporated at strategic positions, establish the conformation and structural properties of designed peptides as mimics of protein secondary structures and hydrophobic tubular peptide channels and close-packed forms. The structures reported in this thesis are given below: 1 Boc-DPro-Aib-Leu-Aib-Val-OMe (DPUL5) C30H53N5O8 2 Boc-DPro-Aib-Val-Aib-Val-OMe (DPUV5a) C29H51N5O8 .(0.5) H2O 3 Boc-DPro-Aib-Val-Aib-Val-OMe (DPUV5b) C27H51N5O8 .(0.17) H2O 4 Boc-DPro-Aib-Ala-Aib-Val-OMe (DPUA5) C27H47N5O8 5 Boc-DPro-Aib-Phe-Aib-Val-OMe (DPUF5) C33H48N5O8 6 Boc-Pro-Aib-DLeu-Aib-DVal-OMe (PUDL5) C30H53N5O8 7 Boc-Pro-Aib-DVal-Aib-DVal-OMe (PUDV5a) C27H51N5O8 .(0.17) H2O 8 Boc-Pro-Aib-DVal-Aib-DVal-OMe (PUDV5b) C27H51N5O8 . 2H2O 9 Boc-Pro-Aib-DAla-Aib-DVal-OMe (PUDA5) C27H47N5O8 10 Boc-Pro-Aib-DPhe-Aib-DVal-OMe (PUDF5) C33H48N5O8 11 Ac-Phe-Pro-Trp-OMe (FPW) C28H32N4O5.(0.33)H2O 12 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPLP8) C56H84N8O1 1 .(0.5) H2O 13 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (YDPP8) C56H83N8O12 .(1.5) H2O 14 Boc-Leu-Val-Val-DPro-ψPro-Leu-Val-Val-OMe (PSIP8) C56H84N8O11S1 .(1.5) H2O 15 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPPV8) C48H84N8O11 16 Boc-Leu-Phe-Val-DPro-Aib-Leu-Phe-Val-OMe (DPUF8) C57H88N8O11.(1.5) H2O 17 Piv-Pro-ψH,CH3Pro-NHMe (PSPL3) C22H37N3O5S1 18 Boc-Leu-Val-Val-Aib-DPro-Leu-Val-Val-OMe (UDPV8) C47H84N8O11.2(C3H7NO) 19 Boc-Leu-Phe-Val-DPro-Ala-Leu-Phe-Val-OMe (BH1P8) C54H78N8O11.H2O 20 Boc-Leu-Phe-Val-DPro-Aib-Leu-Phe-Val-OMe (DPUFP8) C55H84N8O11. (0.5) H2O 21 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (YDPPP8) C56H83N8O12. (1.5) H2O The crystal structure determination of the peptides presented in this thesis provides a wealth of information on the folding patterns of the sequences, in addition to the characterization of many structural and geometric properties. In particular, the study sheds light on the growth and formation of peptide nanotubes and the structure of encapsulated water wires, and also the structural details of Type I′ and Type II′β-turn nucleated hairpins. The study provides the backbone and side chain conformational parameters of the sequences, highlighting the varied conformational excursions possible in the peptide molecules. The thesis is divided into 6 chapters and one appendix. Chapter 1 gives a general introduction to the stereochemistry of the polypeptide chain, description of backbone torsion angles of α-amino acid residues and the major secondary structures of α-peptides, namely α-helix, β-sheet and β-turns. The basic structural features of helices and sheets are given. A brief introduction to polymorphism and weak interactions is also presented, followed by a discussion on X-ray diffraction and solution to the phase problem. Chapter 2 is divided into two parts. PART 1 describes the crystal structures of a series of eight related enantiomeric peptide sequences (Raghavender et al., 2009; Raghavender et al., 2010). The crystal structures of four sequences with the general formula Boc-DPro-Aib-Xxx-Aib-Val-OMe (Xxx = Ala/Val/Leu/Phe) and the enantiomeric sequences provided a set of crystal structures withdifferent packing arrangements. The structure of the peptide with Xxx = Leu revealed a nanotube formation with the Leu lining the inner walls of channel. The channels were found to be empty. The sequence with Xxx = Val revealed a solvent-filled water channel.Investigation of the water wire structures on the diffraction data collected on the same crystal over a period of time revealed the existence of two different kinds of water wires in thechannels. Comparison with the peptide tubular structures available in the literature and the water structure inside the aquaporin channels are contrasted. Close-packed structures are observed in the case of Xxx=Ala and Phe. The backbone conformations are essentially identical. Enantiomeric sequences also revealed similar structures. Polymorphic forms were observed in the case of DVal(3) containing sequence. One form is observed to have water-filled channels forming a nanotube, as opposed to the close-packed structure in the polymorphic form. Crystal parameters DPUL5: C30H53N5O8; P65; a = b = 24.3673 (9) Å, c = 10.6844 (13) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0671, wR2 = 0.1446. DPUV5a: C29H51N5O8 .(0.5) H2O; P65; a = b = 24.2920 (13) Å, c = 10.4838 (11) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0554, wR2 = 0.1546. DPUV5b: C29H51N5O8 .(0.17) H2O; P65; a = b = 24.3161 (3) Å, c = 10.1805 (1) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0617, wR2 = 0.1844. DPUA5: C27H47N5O8; P212121; a = 12.2403 (8), b = 15.7531 (11) Å, c = 16.6894 (11) Å; Z =4; R = 0.0439, wR2 = 0.1249. DPUF5: C33H48N5O8; P212121; a = 10.3268 (8), b = 18.7549 (15) Å, c = 18.9682 (16) Å; Z = 4; R = 0.0472, wR2 = 0.1325. PUDL5: C30H53N5O8; P61; a = b = 24.4102 (8) Å, c = 10.6627 (7) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0543, wR2 = 0.1495. PUDV5a: C29H51N5O8 .(0.17)H2O; P61; a = b = 24.3645 (14) Å, c = 10.4875 (14) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0745, wR2 = 0.1810. PUDV5b: C29H51N5O8. 2H2O; C2; a = 20.7278 (35), b = 9.1079 (15) Å, c = 19.5728 (33) Å; α = γ = 90°, β = 94.207°; Z = 6; R = 0.0659, wR2 = 0.1755. PUDA5: C27H47N5O8; P212121; a = 12.2528 (12), b = 15.7498 (16) Å, c = 16.6866 (16) Å; Z = 4; R = 0.0473, wR2 = 0.1278. PUDF5: C33H48N5O8; P212121; a = 10.3354 (8), b = 18.7733 (10) Å, c = 18.9820 (10) Å; Z = 4; R = 0.0510, wR2 = 0.1526. PART 2 describes the crystallographic characterization of the tubular structure in a tripeptide Ac-Phe-Pro-Trp-OMe (FPW) sequence. The arrangement of the single-file water moleculesin the peptide nanotubes of FPW could be established by X-ray diffraction. In addition, the energetically favoured arrangement of the water wire inside the peptide channels could be modeled by understanding the construction of the peptide nanotube. In particular, the helicalmacrodipole of the peptide nanotube and the water wire dipoles prefer an antiparallel arrangement inside the peptide channels as opposed to parallel arrangements, is established by the classical dipole-dipole interaction energy calculation. In addition, the growth of thenanotubes and the arrangement of the water wires inside the channels could be correlated to the macroscopic dimensions of the crystal by the indexing of the crystal faces and contrasted with the structure of DPUV5. Crystal parameters FPW: C28H32N4O5.(0.33)H2O; P65; a = b = 21.5674 (3) Å, c = 10.1035 (2) Å; α = β = 90°, γ = 120 °; Z = 6; R = 0.0786, wR2 = 0.1771 Chapter 3 provides the crystal structures of five octapeptide β-hairpin forming sequences and a tripeptide containing a modified amino acid, with modification in the side chain (pseudo-proline, ψH,CH3Pro). The parent peptide, Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPLP8), was observed to form a strong Type II′β-turn at the DPro-Pro segment, and the strand segments adopting a β-sheet conformation. Two molecules were observed in the asymmetric unit, inclined to each other at approximately 70°. Modification in the strand sequence Phe(2) to Tyr(2) also resulted in a hairpin with identical conformation and similar packing arrangement. The difference was in the solvent content. In both the cases the molecules were packed orthogonal with respect to each other, resulting in the formation of ribbon-like structures in three dimensions. The replacement of Phe(2) and Phe(7) with Valine residues, with the retention of DPro-Pro β-turn segment, results in an entiely different packing arrangement (parallel). Modification of Pro(5) residue of the turn segment to Aib(5) and ψPro, also results in the molecules packing orthogonally to each other. The tripeptide with a modified form of ψPro, namely ψH,CH3Pro, resulted in a folded structure with a Type VIa β-turn, with the amide bond between the Pro-ψH,CH3Pro segment adopting a cis configuration (Kantharaju et al., 2009). Crystal parameters DPLP8: C56H84N8O11 .(0.5) H2O; P21; a = 14.4028 (8), b = 18.9623 (11) Å, c = 25.4903 (17) Å, β = 105.674 ° (4); Z = 4; R = 0.0959, wR2 = 0.2251. YDPP8: C56H84N8O12 .(1.5) H2O; P212121; a = 14.4028 (8), b = 18.9623 (11) Å, c = 25.4903 (17) Å, Z = 8; R = 0.0989, wR2 = 0.2064. PSIP8: C57H86N8O11S1.(1.5) H2O; C2; a = 34.6080 (2), b = 15.3179 (10) Å, c = 25.6025 (15) Å, β = 103.593 ° (3); Z = 4; R = 0.0931, wR2 = 0.2259. DPPV8: C48H84N8O11; P1; a = 9.922 (3), b = 11.229 (4) Å, c = 26.423 (9) Å, α = 87.146 (6), β = 89.440° (6), γ = 73.282 (7); Z = 2; R = 0.1058, wR2 = 0.2354. DPUF8: C57H88N8O11 .(1.5) H2O; P21; a = 18.410 (2), b = 23.220 (3) Å, c = 19.240 (3) Å, β = 118.036 ° (4); Z = 4; R = 0.1012, wR2 = 0.2061. PSPL3: C22H37N3O5S1; P31; a = b = 14.6323 (22), c = 10.4359 (22) Å, α = β = 90°, γ = 120°; Z = 3; R = 0.0597, wR2 = 0.1590. Chapter 4 describes the crystal structure and molecular conformation of Type I′β-turn nucleated hairpin. The incorporation of Aib-DPro segment in the middle of Leu-Val-Val strands in the peptide sequence Boc-Leu-Val-Val-Aib-DPro-Leu-Val-Val-OMe results in an obligatory Type I′ turn containing hairpin. The molecular conformation and the packing arrangement of the molecules in the crystal are contrasted with the only Type I′β-hairpin reported in the literature and with a sequence where the turn residues are flipped and strand residues replaced with Phe(2) and Phe(7). Crystal parameters UDPV8: C47H84N8O11.2(C3H7NO); P21; a = 11.0623 (53), b = 18.7635 (89) Å, c = 16.6426 (80) Å, β = 102.369 (8); Z = 2; R = 0.0947, wR2 = 0.1730. Chapter 5 provides the crystal structures of three polymorphic forms of β-hairpins. The structure of BH1P8 provides new insights into the packing of hairpins inclined orthogonally to each other. The two polymorphic forms differ not only in their modes of packing in crystals but also in the strong and weak interactions stabilizing the packing arrangements. The polymorphic forms of DPUFP8 differ only in the content of the solvent in the asymmetric unit and the role it plays in bridging the symmetry related pairs of molecules. The polymorphic form YDPPP8 crystallized in a completely different space group, revealing a completely different mode of packing and also the cocrystallized solvent participating in a different set of interactions. Crystal parameters BH1P8: C54H78N8O11.H2O; P212121; a = 18.7511 (9), b = 23.3396 (11) Å, c = 28.1926 (13)Å; Z = 8; R = 0.1208, wR2 = 0.2898. DPUFP8: C55H84N8O11. (0.5) H2O; P21; a = 18.0950 (4), b = 23.0316 (5) Å, c = 18.6368 (5) Å, β = 117.471 (2); Z = 4; R = 0.0915, wR2 = 0.2096. YDPPP8: C56H83N8O12. (1.5) H2O; P21; a = 14.3184 (8), b = 18.9924 (9) Å, c = 25.1569 (14) Å, β = 105.590 (4); Z = 4; R = 0.1249, wR2 = 0.2929. Chapter 6 provides a comprehensive overview of the β-hairpin peptide crystal structures published in the literature as well as those included in the thesis. The hairpins are classified based on the residues composing the β-strands and the mode of their packing in the crystals. In the crystal structures the hairpins are observed to adopt either a Type II′ or Type I′β-turns. The indexing of the crystal faces of a few representative hairpin peptides crystallographically characterized in this thesis, provides a rational explanation for the preferential growth of the crystals in certain directions, when correlated with the strong directional forces (hydrogen bonding) and weak interactions (van der Waals, aromatic-aromatic) observed in the crystal packing. The insights gained by these studies would be highly valuable in understanding the nucleation and growth of β-hairpin peptides and the formation of β-sheet structures. Appendix I describes the Cambridge Structural Database (CSD) analysis of the conformational preferences of the proline residues found in the peptide crystal structures. The frequency distributions of the backbone φ, ψ and ω and side chain χ1, χ2, χ3, χ4 and θ torsion angles of the proline residues are calculated, tabulated and represented as graphical plots. The correlation between the backbone and endocyclic torsion angles provides for a clear evidence of the role of a particular torsion variable χ2 in deciding the state of puckering. In addition, the endocyclic bond angles also appear to be correlated, relatively strongly, with the χ2 torsion. This provides a geometrical explanation of the factors governing the puckering of the proline ring.
254

Frost nucleation and growth on hydrophilic, hydrophobic, and biphilic surfaces

Van Dyke, Alexander Scott January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Amy R. Betz / The purpose of this research was to test if biphilic surfaces mitigate frost and ice formation. Frost, which forms when humid air comes into contact with a surface that is below the dew point and freezing temperature of water, hinders engineering systems such as aeronautics, refrigeration systems, and wind turbines. Most previous research has investigated increasingly superhydrophobic materials to delay frost formation; however, these materials are dependent on fluctuating operating conditions and surface roughness. Therefore, the hypothesis for this research was that a biphilic surface would slow the frost formation process and create a less dense frost layer, and water vapor would preferentially condense on hydrophilic areas, thus controlling where nucleation initially occurs. Preferential nucleation can control the size, shape, and location of frost nucleation. To fabricate biphilic surfaces, a hydrophobic material was coated on a silicon wafer, and a pattern of hydrophobic material was removed using photolithography to reveal hydrophilic silicon-oxide. Circles were patterned at various pitches and diameters. The heat sink was comprised of two parts: a solid bottom half and a finned upper half. Half of the heat sink was placed inside a polyethylene base for insulation. Tests were conducted in quiescent air at room temperature, 22 °C, and two relative humidities, 30% and 60%. Substrate temperatures were held constant throughout all tests. All tests showed a trend that biphilic surfaces suppress freezing temperature more effectively than plain hydrophilic or hydrophobic surfaces; however, no difference between pattern orientation or size was noticed for maximum freezing temperature. However, the biphilic patterns did affect other aspects such as time to freezing and volume of water on the surface. These effects are from the patterns altering the nucleation and coalescence behavior of condensation.
255

Growth of Ultra-thin Ruthenium and Ruthenium Alloy Films for Copper Barriers

Liao, Wen, Bost, Daniel, Ekerdt, John G. 22 July 2016 (has links) (PDF)
We report approaches to grow ultrathin Ru films for application as a seed layer and Cu diffusion barrier. For chemical vapor deposition (CVD) with Ru3(CO)12 we show the role surface hydroxyl groups have in nucleating the Ru islands that grow into a continuous film in a Volmer-Weber process, and how the nucleation density can be increased by applying a CO or NH3 overpressure. Thinner continuous films evolve in the presence of a CO overpressure. We report an optimun ammonia overpressure for Ru nucleation and that leads to deposition of smoother Ru thin films. Finally, we report a comparison of amorphous Ru films that are alloyed with P or B and demonstrate 3-nm thick amorphous Ru(B) films function as a Cu diffusion barrier.
256

Solidification behaviour of magnesium alloys

Jiang, Bo January 2013 (has links)
Magnesium alloys have been extensively used for structural and functional applications due to their low densities. In order to improve the mechanical properties, grain refinement of the microstructures of magnesium alloys has been studied for many years. However, an effective and efficient grain refiner or refinement technique hasn’t been achieved yet, especially for those with aluminium contained. In this study, solution for this problem has been discovered through further understanding of the solidification process, including the potency and the efficiency of nucleation particles, the role of solute, and the role of casting conditions. First of all, the study suggested that MgO particles can act as nuclei in magnesium alloys by measuring and analyzing the differences in cooling curves with various amount of endogenous MgO particles. The differences indicated that the number density of MgO particles has a huge influence on the microstructure. This idea has been fatherly proved by the inoculation of MgO particles in magnesium alloys because the microstructures have been significantly refined after the inoculation. A new kind of refiner (AZ91D-5wt%MgO) has been developed based on such understandings. Secondly, the study discovered that the role of solute has much smaller effect on the grain size than it was suggested in traditional understandings. The inverse-proportional relationship between the grain size and the solute is highly suspected and the major role of solute is to cause columnar- equiaxed transition. The role of casting conditions has also been studied in order to provide experimental evidence for the existence of melt quenching effect in magnesium alloys. It is shown that various casting conditions, such as pouring temperatures and mould temperatures, have large influence on the critical heat balance temperature after rapid pouring. In this study, a theoretical model based on the analysis of cooling curves is presented for grain size prediction. An analytical model of the advance of equiaxed solidification front is developed based on the understanding of the role of casting conditions. Eventually, all these understandings have been applied to magnesium direct-chill (DC) casting. The refined microstructure of DC cast ingots can further assist in understanding the mechanism of advanced shearing achieved by MCAST unit. The comparison of the ingots with and without melt shearing indicated that the advance shearing device can disperse MgO film into individual particles.
257

POLYMORPH FORMATION OF TOLFENAMIC ACID: AN INVESTIGATION OF PRE-NUCLEATION ASSOCIATION

Mattei, Alessandra 01 January 2012 (has links)
The majority of pharmaceutical products are formulated as solids in the crystalline state. With the potential to exist in different crystalline modifications or polymorphs, each solid form bears its own physical and chemical properties, influencing directly bioavailability and manufacturability of the final dosage form. In view of the importance of crystalline form selection in the drug development process, it is imperative for pharmaceutical scientists to work arduously on various aspects of polymorphism, ranging from fundamental understanding of the phenomenon at the molecular level to practical utilization of a specific crystalline form. One common feature of organic crystals is the existence of distinct molecular conformations in different polymorphic structures, known as conformational polymorphism. Conformational polymorphs are routinely observed in drug development, produced when crystal growth conditions vary. Crystallization from solution involves nucleation and crystal growth, the mechanisms that influence the polymorphic outcome. The embryonic solute aggregate has been recognized to play a critical role in dictating the final crystal structure, and solution conditions are also known to drastically influence the self-association behavior of solute molecules during crystallization, affecting crystal packing of organic molecules. For the crystal growth of conformational polymorphs, changes in molecular conformation not only determine the growth kinetics, but also influence the nature and strength of interactions present in the crystal structures. How conformation and intermolecular interaction affect each other underlines the intricacy and the wonder of crystal growth of the organic. Thus, the overall goal of this research is to provide the fundamental understanding of the extent to which solution conditions influence the molecular conformation in the solid-state of a model drug, tolfenamic acid. By combining experimental studies with advanced computational tools, this dissertation offers novel insights into solution species during pre-nucleation and molecular packing of conformational polymorphs of tolfenamic acid. In-depth understanding of the underlying connection between molecular conformation and crystal packing will help advance the knowledge required for rational control of crystal growth.
258

Modeling of nucleation rate of supersaturated calcium sulfate solutions

Jonathas, David 09 November 2012 (has links)
No description available.
259

Nucleation, growth and acoustic properties of thin film diamond

Whitfield, Michael David January 1999 (has links)
No description available.
260

Simulation and characterisation of electroplated micro-copper columns for electronic interconnection

Liu, Jun January 2010 (has links)
Growth mechanism of electroplated copper columns has been systematically studied by simulations and characterizations. A two-dimensional cross-sectional kinetic Monte Carlo (2DCS-KMC) model has been developed to simulate the electrodeposition of single crystal copper. The evolution of the microstructure has been visualized. The cluster density, average cluster size, variance of the cluster size and average aspect ratio were obtained from the simulations. The growth history of the deposition from the first atom to an equivalent of 100 monolayers was reconstructed. Following the single-lattice 2DCS-KMC model for a single crystal, a two-dimensional cross-sectional poly-lattice kinetic Monte Carlo (2DCSP-KMC) model has been developed for simulation of the electrodeposition of polycrystalline copper on both a copper and a gold substrate. With this model, the early-stage nucleation and the grain growth after impingement of nuclei can be simulated; as such the entire growth history is reconstructed in terms of the evolution of microstructure, grain statistics and grain boundary misorientation. The model is capable of capturing some key aspects of nucleation and growth mechanisms including the nucleation type (e.g. homogeneous or heterogeneous), texture development, the growth of grains and higher energetic state of grain boundaries. The model has also proven capable of capturing the effects of deposition parameters including applied electrode potential, concentration of cupric ions and temperature. Their effects are largely dependent on the substrates. The early-stage electrocrystallization of Cu on polycrystalline Au has been studied by ex-situ AFM observations. The evolution of surface morphology of the electrodeposited copper on a sputtered Au seed layer from 16ms to 1000s was observed and their formation mechanism discussed. The heterogeneous nucleation phenomenon, the competitive growth both longitudinally and laterally, and the dominant growth of some nuclei were experimentally observed, which are also visualized by the relevant KMC simulation results at a smaller size scale and a shorter time scale. A heuristic model is therefore proposed to describe the mechanism of the early-stage electrocrystallization of Cu on a polycrystalline Au seed layer. Electroplated copper columns plated for different times have been characterized in terms of the evolution of their external morphology, cross-sectional microstructure and crystal structure. The microstructure of electroplated copper columns is characteristic of bi-modal or tri-modal grain size distribution. The results indicate that recrystallization has occurred during or after the plating, top-down and laterally. Slight changes of the crystal structure were observed by in-situ XRD and it was found that the changes of the (111) and (200) planes occurred at different stages of self-annealing. Finally, the results indicate the presence of organic additives is not essential for self-annealing of a copper column to occur.

Page generated in 0.032 seconds