• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 83
  • 46
  • 45
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 701
  • 131
  • 81
  • 77
  • 70
  • 63
  • 63
  • 60
  • 55
  • 48
  • 45
  • 45
  • 44
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Importance of protein-protein interactions on protein crystallisation

Chirag Mehta Unknown Date (has links)
There is a strong link between solubility, and thus crystallisation, and the molecular interactions of proteins in dilute salt solutions. Such molecular interactions are governed by the weak interaction forces (electrostatic, hydration and hydrophobic). Such forces can be quantitatively estimated in terms of a second virial self-coefficient (B22) and a second virial cross-coefficient (B23) for a single and a binary protein system, respectively. Previous studies confirmed the relation between a value of the second virial coefficient and a type of interaction (attractive or repulsive). The aim of this thesis is to correlate the second virial coefficient with the solubility and nucleation for single and binary protein systems. Model proteins used in this work are lysozyme and ovalbumin from egg-white, and α-amylase from Bacillus Licheniformis (BLA). The measurements are performed for sodium chloride and ammonium sulphate solutions in an acidic pH at 20 oC. Interaction chromatography is used in this work to estimate the B22 and B23 values for the model proteins in salt solutions. From the measured values of B22 and B23, the type of interaction is generalised as a function of the salt type, salt concentration, pH and protein type. For the single protein systems, in ammonium sulphate solutions (0.1 - 2.4 M) at pH 4.0 and 7.0, repulsion or no interactions are observed below 0.8 M and, as the salt concentrations are increased attractive self-interactions are observed for the model proteins. However, for the sodium chloride solutions (0.1 - 2.0 M) at pH 4.0 and 7.0, the interaction patterns vary with the salt concentration, the pH and the type of protein studied. A common feature of the self-interaction for all the model proteins is the attractive interactions close to the isoelectric point. For the binary protein systems, three distinct regions are observed in the ammonium sulphate solutions (0.1 - 1.6 M) at pH in the range 4.0 - 7.0. Attractive or no cross-interactions are observed at low salt concentrations (< 0.5 M). At the intermediate salt concentrations (0.5 - 1.0 M), the cross-interactions are constant and near zero. This is followed by a sharp increase in the attractive interactions above 1.0 M ammonium sulphate concentrations. However, for sodium chloride solutions (0.1 - 1.6 M) at pH 4.0 - 7.0, two distinct regions are observed. Attraction or no interactions are observed at low salt concentrations (< 0.5 M) and above 0.5 M concentrations of sodium chloride, negligible cross-interactions are observed between model proteins. For the single protein system, an overall increase in the solubility of three model proteins is observed with an increase in the concentrations of ammonium sulphate and also for sodium chloride solutions except for BLA, where a salting-in behaviour is observed. Linear regression is used on the solubility data to determine the parameters of the Cohn equation (β and Ks) where the values of β vary with solution pH, protein type and salt type. The values of Ks vary with protein type and salt type. However, it is insensitive to the solution pH for lysozyme in ammonium sulphate, ovalbumin in sodium chloride and BLA in ammonium sulphate solutions. For the binary protein system, the presence of ovalbumin had a measurable effect on lysozyme solubility at pH < 5.0 in both salts. In low concentration sodium chloride solutions (< 0.3 M), a decrease in the solubility of lysozyme was observed with the presence of ovalbumin at acidic pH < 5.0. However, in ammonium sulphate solutions, the lysozyme solubility increases with the addition of ovalbumin in the salt concentration range 1.6 - 2.0 M and at pH < 4.0. The primary nucleation threshold values are also determined for lysozyme in sodium chloride and ammonium sulphate solutions. In sodium chloride solutions (0.2 - 1.0 M), the critical supersaturation values increase as the solution pH is raised from 4.0 to 7.0; however in ammonium sulphate solutions (1.0 - 2.0 M), the reverse effect is observed. The critical supersaturation required to nucleate lysozyme in ammonium sulphate solutions is approximately three times higher than in sodium chloride solutions. For the single protein systems, the measured values of solubility and B22 were correlated using published models (RSL and HDW). For each protein-salt combination, a reasonable single correlation between solubility and B22 is possible as the salt concentrations and pH are varied. There are separate correlations for sodium chloride and ammonium sulphate solutions. Based on the correlation curve of solubility and B22, it is proposed that the acidic pH range (4.0 - 5.0) is better for crystallising and precipitating globular proteins from these salt solutions. If the values of solubility and B22 are converted into a non-dimensional quantity, the data derived from the different protein-salt systems collapse onto a single curve for the same salt type. The B22 values are also correlated with the critical supersaturation (ln(c*/S)) for the primary nucleation of lysozyme in salt solutions. The values of the critical supersaturation increase as the values of the second virial coefficient become negative or reduce. The ideal critical supersaturation required to create nuclei of lysozyme in salt solutions is between 0.1 and 1.4. For the binary protein systems, B23 values were related to the slope of the lysozyme and ovalbumin plot at same salt concentration and solution pH. Further work is required for binary protein systems to generalise such correlations as a function of the salt concentration and pH. The correlations derived in this thesis are useful generally to predict the solubility and primary nucleation of globular protein in salt solutions. This work reinforces the importance of the second virial coefficient in predicting the crystallisation of protein in salt solutions.
342

Nucleation of solitons in the presence of defects

Loxley, Peter Unknown Date (has links)
[abstract] In the process of nucleation, the decay of a metastable state is initiated by the formation of a spatially localised region called a nucleus of critical size. In many realistic situations nucleation is initiated at an impurity or defect; such as a dust particle, an irregularity in a sample, or a crack in the wall of a container. The aim of this thesis is to identify and understand the fundamental changes different types of defect make to nucleation by studying a one-dimensional continuum model used to describe solitons. A well established theory due to Langer is extended to calculate the rate of decay of a metastable state due to the nucleation of solitons at defects. Results are used to find the rate of thermally activated magnetisation reversal for a ferromagnetic nanowire with defects in the uniaxial anisotropy. Defects which are narrower than the soliton width (point-like defects) and wider than the soliton width (step defects) are both modelled. An attractive defect breaks the translational symmetry of a soliton and leads to pinning. The pinning of solitons is found to reduce the activation energy required for nucleation, reduce the critical field above which a metastable state becomes unstable, alter the mechanism by which a metastable state decays, and modify the prefactor for the rate of decay. Changes to the prefactor are interpreted in terms of entropy and the dynamics of metastable decay when a defect is present.
343

Rheological scaling and bubble nucleation of a polymer-diluent solution in extrusion foaming

Shukla, Shunahshep R., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 152-167).
344

Microstructural Development in Al-Si Powder During Rapid Solidification

Amber Lynn Genau January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2447" Amber Lynn Genau. 12/19/2004. Report is also available in paper and microfiche from NTIS.
345

Solidification at the High and Low Rate Extreme

Halim Meco January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2113" Halim Meco. 12/19/2004. Report is also available in paper and microfiche from NTIS.
346

Multiscale modeling of the indentation of nickel-aluminum nano-layers /

Shabib, Ishraq. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2005. / Includes bibliographical references (p. 102-108). Also available in electronic format on the Internet.
347

Multiscale modeling of hydrogen-enhanced void nucleation

Chandler, Mei Qiang, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
348

The pressure response of synthetic polycrystalline diamond f ilms /

St. Omer, Ingrid L. J. January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 116-121). Also available on the Internet.
349

The pressure response of synthetic polycrystalline diamond f ilms

St. Omer, Ingrid L. J. January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 116-121). Also available on the Internet.
350

Investigation of magnetostatics of exchange-coupled nano-dots using the magneto-optic Kerr effect technique

Hernandez, Sarah Christine. January 2009 (has links)
Title from first page of PDF document. Includes bibliographical references (p. 62-63).

Page generated in 0.2309 seconds