• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 34
  • 7
  • 4
  • 1
  • Tagged with
  • 135
  • 135
  • 135
  • 61
  • 56
  • 55
  • 36
  • 29
  • 27
  • 25
  • 24
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Computational Methods for Energy Management in Smart Grids

Mohammadi, Javad 01 September 2016 (has links)
It is expected that the grid of the future differs from the current system by the increased integration of distributed generation, distributed storage, demand response, power electronics, and communications and sensing technologies. The consequence is that the physical structure of the system becomes significantly more distributed. The existing centralized control structure is not suitable any more to operate such a highly distributed system. This thesis is dedicated to providing a promising solution to a class of energy management problems in power systems with a high penetration of distributed resources. This class includes optimal dispatch problems such as optimal power flow, security constrained optimal dispatch, optimal power flow control and coordinated plug-in electric vehicles charging. Our fully distributed algorithm not only handles the computational complexity of the problem, but also provides a more practical solution for these problems in the emerging smart grid environment. This distributed framework is based on iteratively solving in a distributed fashion the first order optimality conditions associated with the optimization formulations. A multi-agent viewpoint of the power system is adopted, in which at each iteration, every network agent updates a few local variables through simple computations, and exchanges information with neighboring agents. Our proposed distributed solution is based on the consensus+innovations framework, in which the consensus term enforces agreement among agents while the innovations updates ensure that local constraints are satisfied.
2

Design of Power Exchange and Bidding System With ASP Technique

Huang, Cong-Hui 16 June 2003 (has links)
With the deregulation of power industry and the market competition, low cost, reliable power supply, and secured system operations are major concerns of the advanced deregulation markets. It is a natural extension to revise the objectives of the traditional optimal power flow (OPF) to help dispatch the power. Maximizing social welfare to create more values of the market is becoming an interesting topic. In the deregulation environment, a user-friendly mechanism is desirable to form an auction market information framework (AMIF) for power auction and market operation. This thesis proposed a prototype system to combine internet based technology, database system, and the auction market to construct an information framework of power auction market. The Internet technology used Dynamic HTML (DHTML) in WWW website to develop a convenient bidding environment for users. The database based on MS Access used open database connection (ODBC) technology to connect database and internet. The auction market integrates auction functions and re-designed OPF to support the auction mechanism and congestion management. This research could also provide a solid foundation for Taiwan¡¦s power system deregulation in the future. The proposed mechanism and its expansion could guarantee a smooth migration process and successful market/system operation.
3

A Current-Based Preventive Security-Constrained Optimal Power Flow by Particle Swarm Optimization

Zhong, Yi-Shun 14 February 2008 (has links)
An Equivalent Current Injection¡]ECI¡^based Preventive Security- Constrained Optimal Power Flow¡]PSCOPF¡^is presented in this paper and a particle swarm optimization (PSO) algorithm is developed for solving non-convex Optimal Power Flow (OPF) problems. This thesis integrated Simulated Annealing Particle Swarm Optimization¡]SAPSO¡^ and Multiple Particle Swarm Optimization¡]MPSO¡^, enabling a fast algorithm to find the global optimum. Optimal power flow is solved based on Equivalent- Current Injection¡]ECIOPF¡^algorithm. This OPF deals with both continuous and discrete control variables and is a mixed-integer optimal power flow¡]MIOPF¡^. The continuous control variables modeled are the active power output and generator-bus voltage magnitudes, while the discrete ones are the shunt capacitor devices. The feasibility of the proposed method is exhibited for a standard IEEE 30 bus system, and it is compared with other stochastic methods for the solution quality. Security Analysis is also conducted. Ranking method is used to highlight the most severe event caused by a specific fault. A preventive algorithm will make use of the contingency information, and keep the system secure to avoid violations when fault occurs. Generators will be used to adjust the line flow to the point that the trip of the most severe line would not cause a major problem.
4

Modelo de máximo carregamento com fator de potência da demanda ajustável e restrição de segurança /

Damazo, Graciliano Antonio. January 2020 (has links)
Orientador: Edméa Cássia Baptista / Resumo: O problema de maximização da margem de carregamento operacional tem por finalidade determinar a maior demanda de carga em um sistema elétrico de potência que satisfaça todas as restrições operacionais do sistema e de equipamentos. Em linhas gerais, conhecer com precisão a máxima demanda de potência ativa e reativa suportada pelo sistema elétrico de potência para que o mesmo opere em condições satisfatórias é uma informação importante para a operação e planejamento do sistema. Muitos trabalhos, da literatura, formulam o problema de máximo carregamento através de um modelo de otimização contínuo, e mais recentemente, alguns trabalhos apresentam modelos que também passaram a levar em consideração o fator de potência da demanda das barras de carga. Neste trabalho propõe-se um modelo para o problema de máximo carregamento baseado no fator de potência de demanda ajustável e levando em consideração restrições de segurança. O problema de maximização da margem de carregamento operacional será formulado como um problema de programação não linear, não convexo de grande porte com variáveis contínuas e visa maximizar o somatório de potências ativas demandadas pelas barras de carga, respeitando um fator de potência mínimo pré-estabelecidos e restrições de segurança pós-contingência. Destaca-se que uma contribuição do trabalho é que o modelo encontre para o sistema um ponto de operação factível na presença de contingências pré-definidas, além disso, respeita os limites físicos e operacionai... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The problem of maximizing the operating load margin aims to determine the highest load demand in an electrical power system that satisfies all operational constraints of the system and equipment. In general, knowing precisely the maximum demand for active and reactive power supported by the electrical power system, in order that it operates in satisfactory conditions, is an important information for the operation and planning of the system. Many works in the literature formulate the problem of maximum loading through a continuous optimization model, and more recently, some works present models that also started to take into account the power factor of the load bars demand. This work proposes a model for the maximum load problem based on the adjustable demand power factor, taking into account security constraints. The problem of maximizing the operating load margin will be formulated as a non-linear, non-convex large programming problem with continuous variables and aims to maximize the sum of active powers demanded by the load bars, respecting an established minimum power factor and post-contingency security constraints. It is important to highlight that the model also ensures that the system finds a feasible operating point, even in the presence of predefined contingencies, besides; it respects the physical and operational limits provided for in the traditional Optimal Power Flow. The proposed model was tested for the IEEE 14, 30, 118 bus systems, simulated on the GAMS platf... (Complete abstract click electronic access below) / Doutor
5

Islanding model for preventing wide-area blackouts and the issue of local solutions of the optimal power flow problem

Bukhsh, Waqquas Ahmed January 2014 (has links)
Optimization plays a central role in the control and operation of electricity power networks. In this thesis we focus on two very important optimization problems in power systems. The first is the optimal power flow problem (OPF). This is an old and well-known nonconvex optimization problem in power system. The existence of local solutions of OPF has been a question of interest for decades. Both local and global solution techniques have been put forward to solve OPF problem but without any documented cases of local solutions. We have produced test cases of power networks with local solutions and have collected these test cases in a publicly available online archive (http://www.maths.ed.ac.uk/optenergy/LocalOpt/), which can be used now by researchers and practitioners to test the robustness of their solution techniques. Also a new nonlinear relaxation of OPF is presented and it is shown that this relaxation in practice gives tight lower bounds of the global solution of OPF. The second problem considered is how to split a network into islands so as to prevent cascading blackouts over wide areas. A mixed integer linear programming (MILP) model for islanding of power system is presented. In recent years, islanding of power networks is attracting attention, because of the increasing occurrence and risk of blackouts. Our proposed approach is quite flexible and incorporates line switching and load shedding. We also give the motivation behind the islanding operation and test our model on variety of test cases. The islanding model uses DC model of power flow equations. We give some of the shortcomings of this model and later improve this model by using piecewise linear approximation of nonlinear terms. The improved model yields good feasible results very quickly and numerical results on large networks show the promising performance of this model.
6

Structure-exploiting interior point methods for security constrained optimal power flow problems

Chiang, Naiyuan January 2013 (has links)
The aim of this research is to demonstrate some more efficient approaches to solve the n-1 security constrained optimal power flow (SCOPF) problems by using structure-exploiting primal-dual interior point methods (IPM). Firstly, we consider a DC-SCOPF model, which is a linearized version of AC-SCOPF. One new reformulation of the DC-SCOPF model is suggested, in which most matrices that need to be factorized are constant. Consequently, most numerical factorizations and a large number of back-solve operations only need to be performed once throughout the entire IPM process. In the framework of the structure-exploiting IPM implementation, one of the major computational efforts consists of forming the Schur complement matrix, which is very computationally expensive if no further measure is applied. One remedy is to apply a preconditioned iterative method to solve the corresponding linear systems which appear in assembling the Schur complement matrix. We suggest two main schemes to pick a good and robust preconditioner for SCOPF problems based on combining different “active” contingency scenarios. The numerical results show that our new approaches are much faster than the default structure-exploiting method in OOPS, and also that it requires less memory. The second part of this thesis goes to the standard AC-SCOPF problem, which is a nonlinear and nonconvex optimization problem. We present a new contingency generation algorithm: it starts with solving the basic OPF problem, which is a much smaller problem of the same structure, and then generates contingency scenarios dynamically when needed. Some theoretical analysis of this algorithm is shown for the linear case, while the numerical results are exciting, as this new algorithm works for both AC and DC cases. It can find all the active scenarios and significantly reduce the number of scenarios one needs to contain in the model. As a result, it speeds up the solving process and may require less IPM iterations. Also, some heuristic algorithms are designed and presented to predict the active contingencies for the standard AC-SCOPF, based on the use of AC-OPF or DC-SCOPF. We test our heuristic algorithms on the modified IEEE 24-bus system, and also present their corresponding numerical results in the thesis.
7

Optimal DG Placement: A Multimethod Analysis

Ratul, Saiful A 16 December 2016 (has links)
With Power System being restructured in the vision of Smart Grid, it is important now more than ever to find suitable locations to place Distributed Generators (DG). Distributed generators, which may be renewable, are not limited to specific locations as in the case of conventional generators. Several papers have been published that make suggestions on where the optimal location of DG should be in a system. Objectives ranging from loss minimization to total cost minimization have been the factor for such studies. In this study, a new method is introduced that hopes to improve a current system in three ways by maximizing load, minimizing the locational marginal price and improving line contingency scenarios. The proposed methodology is simulated using MATPOWER’s Optimal Power Flow on the IEEE 14 bus test system.
8

Otimização de fluxo de potência em redes elétricas com o UPFC. / Optimization of the power flow at electrical networks with the UPFC.

Pereira, Marcos 24 October 2008 (has links)
Neste trabalho abordamos o equipamento UPFC, pertencente à família FACTS, adequado ao estudo do regime permanente de sistemas de potência, sendo descritos modelos com diferentes níveis de detalhamento, assim como sua associação com a rede elétrica. Uma proposição alternativa para o modelamento do UPFC foi apresentada, sendo discutidos seus aspectos e particularidades por meio da análise nodal modificada (ANM), cujo tratamento permite obter a corrente nos conversores série de maneira direta. Desenvolvemos um programa de otimização de fluxo de potência, utilizando o método dos pontos interiores, sendo também elaborado um programa de otimização baseado no método Quase-Newton, permitindo uma análise comparativa de métodos e de modelos. Várias condições operativas de uma rede de pequeno porte, com apenas quatro barras e de uma rede de médio porte, com 39 barras, foram estudadas do ponto de vista de otimização e de limites de tensões e fluxos, observando-se a influência do UPFC no controle de variáveis da rede elétrica. / In this work we deal with the UPFC device which belongs to the FACTS family and is suitable to study the steady state of power systems. We describe models with different levels of detail, as well as their association with the electric network. One alternative proposition to the model of the UPFC is shown. The aspects and particularities are discussed by means of modified nodal analysis (ANM), which treatment allows us to get directly the current in series converters. We developed an optimization program of load flow, using the interior points method, and also worked out an optimization program based on the Quasi-Newton method, allowing a comparative analysis of methods and models. Several operating conditions of a small size network, with only 4 bars and of a medium size network, with 39 bars, were studied from the point of view of the optimization and of the voltage and of the flow limits, observing the influence of the UPFC on control of variables of the electric network.
9

Otimização de fluxo de potência em redes elétricas com o UPFC. / Optimization of the power flow at electrical networks with the UPFC.

Marcos Pereira 24 October 2008 (has links)
Neste trabalho abordamos o equipamento UPFC, pertencente à família FACTS, adequado ao estudo do regime permanente de sistemas de potência, sendo descritos modelos com diferentes níveis de detalhamento, assim como sua associação com a rede elétrica. Uma proposição alternativa para o modelamento do UPFC foi apresentada, sendo discutidos seus aspectos e particularidades por meio da análise nodal modificada (ANM), cujo tratamento permite obter a corrente nos conversores série de maneira direta. Desenvolvemos um programa de otimização de fluxo de potência, utilizando o método dos pontos interiores, sendo também elaborado um programa de otimização baseado no método Quase-Newton, permitindo uma análise comparativa de métodos e de modelos. Várias condições operativas de uma rede de pequeno porte, com apenas quatro barras e de uma rede de médio porte, com 39 barras, foram estudadas do ponto de vista de otimização e de limites de tensões e fluxos, observando-se a influência do UPFC no controle de variáveis da rede elétrica. / In this work we deal with the UPFC device which belongs to the FACTS family and is suitable to study the steady state of power systems. We describe models with different levels of detail, as well as their association with the electric network. One alternative proposition to the model of the UPFC is shown. The aspects and particularities are discussed by means of modified nodal analysis (ANM), which treatment allows us to get directly the current in series converters. We developed an optimization program of load flow, using the interior points method, and also worked out an optimization program based on the Quasi-Newton method, allowing a comparative analysis of methods and models. Several operating conditions of a small size network, with only 4 bars and of a medium size network, with 39 bars, were studied from the point of view of the optimization and of the voltage and of the flow limits, observing the influence of the UPFC on control of variables of the electric network.
10

Resolução do problema de fluxo de potência ótimo com variáveis de controle discretas / Resolution of optimal power flow problem with discrete control variables

Soler, Edilaine Martins 01 March 2011 (has links)
O objetivo de um problema de Fluxo de Potência Ótimo é determinar o estado de um sistema de transmissão de energia elétrica que otimize um dado desempenho do sistema, e satisfaça suas restrições físicas e operacionais. O problema de Fluxo de Potência Ótimo é modelado como um problema de programação não linear com variáveis discretas e contínuas. Na maioria das abordagens da literatura para a resolução de problemas de Fluxo de Potência Ótimo, os controles discretos são modelados como variáveis contínuas. Estas formulações estão longe da realidade de um sistema elétrico pois alguns controles podem somente ser ajustados por passos discretos. Este trabalho apresenta um método para tratar as variáveis discretas do problema de Fluxo de Potência Ótimo. Uma função, que penaliza a função objetivo quando as variáveis discretas assumem valores não discretos, é apresentada. Ao incorporar esta função na função objetivo, um problema de programação não linear com somente variáveis contínuas é obtido e a solução desse problema é equivalente à solução do problema original, que contém variáveis discretas e contínuas. O problema de programação não linear é resolvido pelo Método de Pontos Interiores com Filtro. Experimentos numéricos com os sistemas elétricos IEEE 14, 30, 118 e 300 Barras comprovam que a abordagem proposta é eficiente na resolução de problemas de Fluxo de Potência Ótimo. / The aim of solving the Optimal Power Flow problem is to determine the state of an electric power transmission system that optimizes a given system performance, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. In most techniques existing in the literature to solve the Optimal Power Flow problems, the discrete controls are modeled as continuous variables. These formulations are unrealistic, as some controls can be set only to values taken from a given set of discrete values. This study proposes a method for handling the discrete variables of the Optimal Power Flow problem. A function, which penalizes the objective function when discrete variables assume non-discrete values, is presented. By including this penalty function into the objective function, a nonlinear programming problem with only continuous variables is obtained and the solution of this problem is equivalent to the solution of the initial problem that contains discrete and continuous variables. The nonlinear programming problem is solved by a Interior-Point Method with filter line-search. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the proposed approach is efficient in the resolution of OPF problems.

Page generated in 0.0532 seconds