• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 91
  • 82
  • 45
  • 29
  • 16
  • 11
  • 10
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 761
  • 103
  • 100
  • 81
  • 72
  • 56
  • 53
  • 53
  • 52
  • 50
  • 49
  • 47
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Využití vibrodiagnostiky v soudním inženýrství / Use of Vibrodiagnostics in Forensic Engineering

Záleská, Veronika January 2014 (has links)
This thesis deals with the measurement and evaluation of vibration on selected parts of car. Part of the work is devoted to the theory of vibration and noise, which includes, among others, presentations of common disorders of machine parts in terms of vibration. In the practical part of the work were performed out measurements described here and the results analyzed. Last part is in short devoted to the possibilities of using a similar measurement in forensic engineering.
162

The Interaction of the Madden-Julian Oscillation and the Quasi-Biennial Oscillation in Observations and a Hierarchy of Models

Martin, Zane Karas January 2020 (has links)
The Madden-Julian oscillation (MJO) and the quasi-biennial oscillation (QBO) are two key modes of variability in the tropical atmosphere. The MJO, characterized by propagating, planetary-scale signals in convection and winds, is the main source of subseasonal variability and predictability in the tropics. The QBO is a ~28-month cycle in which the tropical stratospheric zonal winds alternate between easterly and westerly regimes. Via thermal wind balance these winds induce temperature anomalies, and both wind and temperature signals reach the tropopause. Recent observational results show a remarkably strong link between the MJO and the QBO during boreal winter: the MJO is stronger and more predictable when QBO winds in the lower stratosphere are easterly than when winds are westerly. Despite its important implications for MJO theory and prediction, the physical processes driving the MJO-QBO interaction are not well-understood. In this thesis, we use a hierarchy of models – including a cloud-resolving model, a forecast model, and a global climate model – to examine whether models can reproduce the MJO-QBO link, and better understand the possible mechanisms driving the connection. Based in part on our modeling findings, we further explore observed QBO temperature signals thought to be important for the MJO-QBO link. After providing necessary background and context in the first two chapters, the third chapter looks at the MJO-QBO link in a small-domain, cloud-resolving model. The model successfully simulates convection associated with two MJO events that occurred during the DYNAMO field campaign. To examine the effect of QBO, we add various QBO temperature and wind anomalies into the model. We find that QBO temperature anomalies alone, without wind anomalies, qualitatively affect the model MJO similarly to the observed MJO-QBO connection. QBO wind anomalies have no clear effect on the modeled MJO. We note however that the MJO response is quite sensitive to the vertical structure of the QBO temperature anomalies, and for realistic temperature signals the model response is very small. In the fourth chapter, we look at the MJO-QBO link in a state-of-the-art global forecast model with a good representation of the MJO. We conduct 84 hind-cast experiments initialized on dates across winters from 1989-2017. For each of these dates, we artificially impose an easterly and a westerly QBO in the stratospheric initial conditions, and examine the resulting changes to the simulated MJO under different stratospheric states. We find that the effect of the QBO on the model MJO is of the same sign as observations, but is much smaller. A large sample size is required to capture any QBO signal, and tropospheric initial conditions seem more important than the stratosphere in determining the behavior of the simulated MJO. Despite the weak signal, we find that simulations with stronger QBO temperature anomalies have a stronger MJO response. In the fifth chapter, we conduct experiments in recent versions of a NASA general circulation model. We find that a version with a high vertical resolution generates a reasonable QBO and MJO, but has no MJO-QBO link. However, this model has weaker-than-observed QBO temperature anomalies, which may explain the lack of an MJO impact. To explore this potential bias, we impose the QBO by nudging the model stratospheric winds towards reanalysis, leading to more realistic simulation of QBO temperature anomalies. Despite this, the model still fails to show a strong MJO-QBO link across several ensemble experiments and sensitivity tests. We conclude with discussion of possible reasons why the model fails to capture the MJO-QBO connection. The sixth chapter examines QBO temperature signals in a range of observational and reanalysis datasets. In particular, we are motivated by two elements of the MJO-QBO relationship which are especially puzzling: the seasonality (i.e. that the MJO-QBO link is only significant in boreal winter) and long-term trend (i.e. that the MJO-QBO link seems to have only emerged since the 1980s). By examining QBO temperature signals around the tropopause, we highlight changes to the strength and structure of QBO temperature anomalies both in boreal winter and in recent decades. Whether these changes are linked to the MJO-QBO relationship, and what more generally might explain them, is not presently clear. Overall, we demonstrate that capturing the MJO-QBO relationship in a variety of models is a difficult task. The majority of evidence indicates that QBO-induced temperature anomalies are a plausible pathway through which the QBO might modulate the MJO, but the theoretical description of precisely how these temperature anomalies may impact convection is lacking and likely more nuanced than the literature to date suggests. Most models show only a weak modulation of the MJO associated with changes in upper-tropospheric temperatures, and even when those temperature signals are artificially enhanced, comprehensive GCMs still fail to show a significant MJO-QBO connection. Our observational study indicates that temperature anomalies associated with the QBO show striking modulations on various timescales of relevance to the MJO-QBO link, but do not conclusively demonstrate a clear connection to the MJO. This difficulty simulating a strong MJO-QBO connection suggests that models may lack a key process in driving the MJO and coupling the tropical stratosphere and troposphere. It is further possible that the observed link may be in some regards different than is currently theorized -- for example statistically not robust, due to non-stratospheric processes, or driven by some mechanism that has not been suitably explored.
163

Development of a non-contact blood rheometer using acoustic levitation and laser scattering techniques

Ansari Hosseinzadeh, Vahideh 04 June 2019 (has links)
Coagulopathy, a condition in which blood coagulation is impaired, can be inherited or result from a variety of conditions including severe trauma, illness or surgery. Perioperative monitoring of a patient’s coagulation status is important to identify coagulopathic patients. Thromboelastography or TEG remains the gold standard for whole blood coagulation monitoring. However, TEG suffers from certain well-documented drawbacks such as contact containment and manipulation of the blood sample, large and uncontrolled strain, and the inability to distinguish the contribution of elasticity and viscosity during blood coagulation. We developed a non-contact blood rheometer which uses a single drop of blood to measure its viscoelastic properties. Small sample size (typically 5-15 μL), low shear strain (linear viscoelasticity), and non-contact manipulation and containment of samples make this technique unique for real-time monitoring of blood coagulation. In the first part of this work, we addressed the development of the technique, benchmarking the results against known material properties standards. We observed large amplitude oscillations of the levitated drop results in multiple resonance modes and excessive dissipation. We suggested upper bound limits for drop oscillation amplitudes required to satisfy the Lamb theoretical expressions for drop frequency and damping. In the second part, we applied our technique to study sickle-cell disease. Our technique showed that the shape oscillation of blood drops was able to assess an abnormally increased viscosity in sickle cell patients when compared with normal controls over a range of hematocrit. Furthermore, the technique was sensitive enough to detect viscosity changes induced by hydroxyurea treatment. The third part of this work focused on blood coagulation monitoring. The technique showed sensitivity to coagulation parameters, such as platelet count, calcium ion concentration, and hematocrit. A comparison of the results with TEG showed coagulation started sooner in the levitation technique, but with a lower rate and lower maximum stiffness. Thus, the technique developed can be used as a monitoring tool to assess blood mechanical properties sensitively enough to be of use in clinical diagnostic settings. / 2020-06-04T00:00:00Z
164

Causes and Countermeasures for Nappe Oscillation: An Experimental Approach

Anderson, Aaron Allan 01 May 2014 (has links)
Weirs are commonly used as spillways to release flows from a reservoir. The free-falling jet on the downstream side of the weir is called the nappe. Under certain hydraulic conditions, determined mainly by the size, design, and construction of the weir, nappe oscillation, otherwise known as nappe vibration, can occur. Characteristics of this dynamic behavior include excessive acoustic energy manifested as sound pressure waves and lowfrequency noise accompanied by horizontal waves or banding on the nappe. Mitigation of this process may be required, especially if the weir operates in close proximity to occupied structures. Instability of water jets moving through air has been a topic of study for over a century, although studies specific to curvilinear weir nappe flow are less common. The objective of this research is to further the understanding related to the mechanisms that cause nappe vibration, document the occurrence conditions, and investigate mitigation techniques. Research was conducted at the Utah Water Research Laboratory (UWRL) using three physical models: A 6 ft wide x 3.5 ft tall weir with a quarter round crest (model #1) A 15.4 ft wide x 11 ft tall weir with a broad crest (model #2) A 16 ft wide x 12 ft tall weir with a quarter round crest (model #3) Testing included confined and unconfined nappe conditions (open air cavity behind the nappe vs. closed air cavity) for model #1 and model #3. Vibration frequencies were recorded and analyzed using an accelerometer and microphone. Comparisons were made between the three models of different scale. Testing included modifications to the weir crest and the weir apron to study the effect on the behavior of the nappe. The results of this study are presented, including a review of previous literature and theories. The mechanisms that sustain and amplify the nappe vibration phenomenon varied at the different size-scales, while evidence exists that the root cause of initial instability leading to self-induced vibration can be traced to the same source. The results of this study should be of practical use to engineers, researchers, and those concerned with dam safety.
165

Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics

Aubuchon, Vanessa V. 25 July 2013 (has links)
Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests.  The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test.  Comparisons between the legacy Apollo prediction method and test data are favorable.  A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector.  This assumption seems reasonable and produces good results, but has never been experimentally verified.  The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult.  Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model.  A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM.  The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes.  The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics.  Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design.  More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has been identified by the project as key to a successful Orion Critical Design Review. / Master of Science
166

Observation of νμ→νe oscillation in the T2K experiment / T2K実験におけるνμ→νe振動の観測

Ieki, Kei 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18063号 / 理博第3941号 / 新制||理||1568(附属図書館) / 30921 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 准教授 市川 温子, 教授 鶴 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
167

Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment / T2K実験におけるニュートリノ相互作用と三世代間ニュートリノ振動の測定

Kikawa, Tatsuya 23 January 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18672号 / 理博第4021号 / 新制||理||1580(附属図書館) / 31605 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 准教授 市川 温子, 教授 谷森 達 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
168

Muon Antineutrino Disappearance Measurement by the T2K Experiment / T2K実験におけるミューオン型反ニュートリノ消失の測定

Hiraki, Takahiro 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19500号 / 理博第4160号 / 新制||理||1597(附属図書館) / 32536 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 谷森 達, 准教授 市川 温子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
169

Measurement of Neutrino Oscillation with a High Intensity Neutrino Beam / 大強度ニュートリノビームによるニュートリノ振動の測定

Nakamura, Keigo 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21441号 / 理博第4434号 / 新制||理||1637(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 鶴 剛, 准教授 市川 温子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
170

Density-Wave Instability Characterization in Boiling Water Reactors under MELLLA+ Domain during ATWS

Hurley, Paul Raymond 09 July 2023 (has links)
Density wave oscillations (DWO) are a class of two-phase flow instabilities which can pose significant safety concerns to boiling water reactors (BWR). During an anticipated transient without scram (ATWS) while operating in the proposed extended operating domain MELLLA+, natural circulation conditions can potentially lead to DWO-type instabilities which have the capability to develop into cycles of fuel surface dryout and rewet, damaging core integrity. In order to provide data on these phenomena, a series of tests were performed at the KATHY facility during which DWO was developed with and without simulated neutronic feedback. In this dissertation, the data provided by these tests is analyzed to determine the onset conditions for DWO. Following this, several models are assessed for their capability in predicting this stability boundary compared to the experimental results. The models were chosen in order to provide a suitably large range of prediction methodologies. Two analytical drift-flux models developed with and without thermal equilibrium are shown, with respective differences compared. A computational model of the full KATHY natural circulation loop is built using the 1D thermal-hydraulics code TRACE. This is adapted with a point-kinetics model for neutronic feedback for experimental comparison. With both the analytical models and the TRACE model, a series of parametric studies are performed showing the effects of inlet/outlet flow restrictions, pressure, channel geometry, and axial power profile on the stability boundary. Finally, two machine learning neural network-based models are developed and trained on various subsets of the experimental data. The results from each model showed certain benefits and drawbacks based on model complexity and physicality. / Doctor of Philosophy / Certain conditions in the core of a boiling water reactor (BWR) can lead to unstable flows due to the high ratio between the power and the coolant flow rate. These instabilities, called density wave oscillations (DWO), have been shown to occur during a specific accident scenario known as an anticipated transient without scram (ATWS) when the reactor is operating in a lower flow domain called MELLLA+. In this accident, pump flow through the core is halted, but the reactor is not shut down. This can lead to serious safety concerns if left unaddressed. To analyze these instabilities, the KATHY facility performed a series of tests with and without power feedback from simulated neutron response. In this dissertation, the onset conditions from these tests are given and compared to several models for predicting the stability boundary. Two analytical models proposed by Ishii and Saha are compared and the effect of certain parameters on the stability is assessed. Next, a model of the KATHY loop is built using the thermal-hydraulics code TRACE both with and without simulated power feedback. Finally, two types of machine learning models are developed to determine their accuracy in predicting the instability conditions. The overall performance of each is compared and their benefits and drawbacks are highlighted.

Page generated in 0.043 seconds