• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 346
  • 142
  • 54
  • 28
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 722
  • 722
  • 529
  • 175
  • 146
  • 143
  • 135
  • 120
  • 92
  • 90
  • 82
  • 73
  • 72
  • 71
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ℓasso-MPC - predictive control with ℓ₁-regularised least squares

Gallieri, Marco January 2014 (has links)
No description available.
2

Predictive iterative learning control

Townley, Tracy Yvette January 2002 (has links)
No description available.
3

Model Predictive Control in Flight Control Design : Stability and Reference Tracking

Simon, Daniel January 2014 (has links)
Aircraft are dynamic systems that naturally contain a variety of constraints and nonlinearities such as, e.g., maximum permissible load factor, angle of attack and control surface deflections. Taking these limitations into account in the design of control systems are becoming increasingly important as the performance and complexity of the controlled systems is constantly increasing. It is especially important in the design of control systems for fighter aircraft. These require maximum control performance in order to have the upper hand in a dogfight or when they have to outmaneuver an enemy missile. Therefore pilots often maneuver the aircraft very close to the limit of what it is capable of, and an automatic system (called flight envelope protection system) against violating the restrictions is a necessity. In other application areas, nonlinear optimal control methods have been successfully used to solve this but in the aeronautical industry, these methods have not yet been established. One of the more popular methods that are well suited to handle constraints is Model Predictive Control (MPC) and it is used extensively in areas such as the process industry and the refinery industry. Model predictive control means in practice that the control system iteratively solves an advanced optimization problem based on a prediction of the aircraft's future movements in order to calculate the optimal control signal. The aircraft's operating limitations will then be constraints in the optimization problem. In this thesis, we explore model predictive control and derive two fast, low complexity algorithms, one for guaranteed stability and feasibility of nonlinear systems and one for reference tracking for linear systems. In reference tracking model predictive control for linear systems we build on the dual mode formulation of MPC and our goal is to make minimal changes to this framework, in order to develop a reference tracking algorithm with guaranteed stability and low complexity suitable for implementation in real time safety critical systems. To reduce the computational burden of nonlinear model predictive control several methods to approximate the nonlinear constraints have been proposed in the literature, many working in an ad hoc fashion, resulting in conservatism, or worse, inability to guarantee recursive feasibility. Also several methods work in an iterative manner which can be quit time consuming making them inappropriate for fast real time applications. In this thesis we propose a method to handle the nonlinear constraints, using a set of dynamically generated local inner polytopic approximations. The main benefits of the proposed method is that while computationally cheap it still can guarantee recursive feasibility and convergence. / <p>The series name "<em>Linköping studies in science and technology. Licentiate Thesis</em>" is incorrect. The correct series name is "<em>Linköping studies in science and technology. Thesis</em>".</p>
4

Clearing bubble blockages in micro channels using a model predictive controller /

Patton, Chris. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 40-41). Also available on the World Wide Web.
5

Critical Zone Calculation For Automated Vehicles Using Model Predictive Control

Glasky, Enimini Theresa 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis studies critical zones of automated vehicles. The goal is for the automated vehicle to complete a car-following or lane change maneuver without collision. For instance, the automated vehicle should be able to indicate its interest in changing lanes and plan how the maneuver will occur by using model predictive control theory, in addition to the autonomous vehicle toolbox in Matlab. A test bench (that includes a scenario creator, motion logic and planner, sensors, and radars) is created and used to calculate the parameters of a critical zone. After a trajectory has been planned, the automated vehicle then attempts the car following or lane change while constantly ensuring its safety to continue on this path. If at any point, the lead vehicle brakes or a trailing vehicle accelerates, the automated vehicle makes the decision to either brake, accelerate, or abandon the lane change.
6

Model Predictive Control of Magnetic Bearing System

Huang, Yang, S3110949@student.rmit.edu.au January 2007 (has links)
Magnetic Bearing Systems have been receiving a great deal of research attention for the past decades. Its inherent nonlinearity and open-loop instability are challenges for controller design. This thesis investigates and designs model predictive control strategy for an experimental Active Magnetic Bearing (AMB) laboratory system. A host-target development environment of real-time control system with hardware in the loop (HIL) is implemented. In this thesis, both continuous and discrete time model predictive controllers are studied. In the first stage, local MPC controllers are applied to control the AMB system; and in the second stage, concept of supervisory controller design is then investigated and implemented. Contributions of the thesis can be summarized as follows; 1. A Discrete time Model Predictive Controller has been developed and applied to the active magnetic bearing system. 2. A Continuous time Model Predictive Controller has been developed and applied to the active magnetic bearing system. 3. A frequency domain identification method using FSF has been applied to pursue model identification with respect to local MPC and magnetic bearing system. 4. A supervisory control strategy has been applied to pursue a two stages model predictive control of active magnetic bearing system.
7

Model predictive control (MPC) algorithm for tip-jet reaction drive systems

Kestner, Brian 16 November 2009 (has links)
Modern technologies coupled with advanced research have allowed model predictive control (MPC) to be applied to new and often experimental systems. The purpose of this research is to develop a model predictive control algorithm for tip-jet reaction drive system. This system's faster dynamics require an extremely short sampling rate, on the order of 20ms, and its slower dynamics require a longer prediction horizon. This coupled with the fact that the tip-jet reaction drive system has multiple control inputs makes the integration of an online MPC algorithm challenging. In order to apply a model predictive control to the system in question, an algorithm is proposed that combines multiplexed inputs and a feasible cooperative MPC algorithm. In the proposed algorithm, it is hypothesized that the computational burden will be reduced from approximately Hp(Nu + Nx)3 to pHp(Nx+1)3 while maintaining control performance similar to that of a centralized MPC algorithm. To capture the performance capability of the proposed controller, a comparison its performance to that of a multivariable proportional-integral (PI) controller and a centralized MPC is executed. The sensitivity of the proposed MPC to various design variables is also explored. In terms of bandwidth, interactions, and disturbance rejection, the proposed MPC was very similar to that of a centralized MPC or PI controller. Additionally in regards to sensitivity to modeling error, there is not a noticeable difference between the two MPC controllers. Although the constraints are handled adequately for the proposed controller, adjustments can be made in the design and sizing process to improve the constraint handling, so that it is more comparable to that of the centralized MPC. Given these observations, the hypothesis of the dissertation has been confirmed. The proposed MPC does in fact reduce computational burden while maintaining close to centralized MPC performance.
8

Robust Model Predictive Control and Distributed Model Predictive Control: Feasibility and Stability

Liu, Xiaotao 03 December 2014 (has links)
An increasing number of applications ranging from multi-vehicle systems, large-scale process control systems, transportation systems to smart grids call for the development of cooperative control theory. Meanwhile, when designing the cooperative controller, the state and control constraints, ubiquitously existing in the physical system, have to be respected. Model predictive control (MPC) is one of a few techniques that can explicitly and systematically handle the state and control constraints. This dissertation studies the robust MPC and distributed MPC strategies, respectively. Specifically, the problems we investigate are: the robust MPC for linear or nonlinear systems, distributed MPC for constrained decoupled systems and distributed MPC for constrained nonlinear systems with coupled system dynamics. In the robust MPC controller design, three sub-problems are considered. Firstly, a computationally efficient multi-stage suboptimal MPC strategy is designed by exploiting the j-step admissible sets, where the j-step admissible set is the set of system states that can be steered to the maximum positively invariant set in j control steps. Secondly, for nonlinear systems with control constraints and external disturbances, a novel robust constrained MPC strategy is designed, where the cost function is in a non-squared form. Sufficient conditions for the recursive feasibility and robust stability are established, respectively. Finally, by exploiting the contracting dynamics of a certain type of nonlinear systems, a less conservative robust constrained MPC method is designed. Compared to robust MPC strategies based on Lipschitz continuity, the strategy employed has the following advantages: 1) it can tolerate larger disturbances; and 2) it is feasible for a larger prediction horizon and enlarges the feasible region accordingly. For the distributed MPC of constrained continuous-time nonlinear decoupled systems, the cooperation among each subsystems is realized by incorporating a coupling term in the cost function. To handle the effect of the disturbances, a robust control strategy is designed based on the two-layer invariant set. Provided that the initial state is feasible and the disturbance is bounded by a certain level, the recursive feasibility of the optimization is guaranteed by appropriately tuning the design parameters. Sufficient conditions are given ensuring that the states of each subsystem converge to the robust positively invariant set. Furthermore, a conceptually less conservative algorithm is proposed by exploiting the controllability set instead of the positively invariant set, which allows the adoption of a shorter prediction horizon and tolerates a larger disturbance level. For the distributed MPC of a large-scale system that consists of several dynamically coupled nonlinear systems with decoupled control constraints and disturbances, the dynamic couplings and the disturbances are accommodated through imposing new robustness constraints in the local optimizations. Relationships among, and design procedures for the parameters involved in the proposed distributed MPC are derived to guarantee the recursive feasibility and the robust stability of the overall system. It is shown that, for a given bound on the disturbances, the recursive feasibility is guaranteed if the sampling interval is properly chosen. / Graduate / 0548 / 0544 / 0546 / liuxiaotao1982@gmail.com
9

Multivariable constrained Model Predictive Control

Heise, Sharon Ann January 1994 (has links)
No description available.
10

Model predictive control design for load frequency control problem

Atić, Nedz̆ad. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vii, 68 p. : ill. Includes abstract. Includes bibliographical references (p. 66-68).

Page generated in 0.0279 seconds