• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 9
  • 8
  • 4
  • 2
  • Tagged with
  • 63
  • 63
  • 22
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Density-based unstructured simulations of gas-turbine combustor flows

Almutlaq, Ahmed N. January 2007 (has links)
The goal of the present work was to identify and implement modifications to a density-based unstructured RANS CFD algorithm, as typically used in turbomachinery flows (represented here via the RoIIs-Royce 'Hydra' code), for application to Iow Mach number gas-turbine combustor flows. The basic algorithm was modified to make it suitable for combustor relevant problems. Fixed velocity and centreline boundary conditions were added using a characteristic based method. Conserved scalar mean and variance transport equations were introduced to predict scalar mixing in reacting flows. Finally, a flarnelet thermochemistry model for turbulent non-premixed combustion with an assumed shape pdf for turbulence-chemistry interaction was incorporated. A method was identified whereby the temperature/ density provided by the combustion model was coupled directly back into the momentum equations rather than from the energy equation. Three different test cases were used to validate the numerical capabilities of the modified code, for isothermal and reacting flows on different grid types. The first case was the jet in confined cross flow associated with combustor liner-dilution jetcore flow interaction. The second was the swirling flow through a multi-stream swirler. These cases represent the main aerodynamic features of combustor primary zones. The third case was a methane-fueled coaxial jet combustor to assess the combustion model implementation. This study revealed that, via appropriate modifications, an unstructured density-based approach can be utilised to simulate combustor flows. It also demonstrated that unstructured meshes employing nonhexahedral elements were inefficient at accurate capture of flow processes in regions combining rapid mixing and strong convection at angles to cell edges. The final version of the algorithm demonstrated that low Mach RANS reacting flow simulations, commonly performed using a pressure-based approach, can successfully be reproduced using a density-based approach.
32

Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène / Numerical study of hydrogen enrichment of lean methane/air turbulent premixed combustion

Mameri, Abdelbaki 15 December 2009 (has links)
L’enrichissement des hydrocarbures par l’hydrogène permet d’améliorer les performances de la combustion pauvre (augmentation de la réactivité, résistance à l’étirement, stabilité, réduction des polluants, …). Il est primordial de connaitre les caractéristiques de la combustion de ces combustibles hybrides dans différentes conditions, afin de pouvoir les utiliser d’une manière sûre et efficace dans les installations pratiques. L’approche expérimentale reste coûteuse et limitée à certaines conditions opératoires. Cependant, le calcul numérique peut constituer la solution la plus adaptée, compte tenu du progrès réalisé dans le domaine de l’informatique et de la modélisation. Dans ce contexte, ce travail que nous avons effectué à l’ICARE (Institut de Combustion, Aérothermique et Réactivité, CNRS Orléans) vise à compléter les résultats des essais expérimentaux. Les effets de la richesse du mélange et l’ajout de l’hydrogène sur la structure et la formation des polluants sont étudiés dans ce travail. L’augmentation de la richesse du combustible permet de stabiliser la flamme, mais augmente la température et produit plus de CO, CO2 et NOx. Par contre, l’addition de H2 augmente l’efficacité du mélange, stabilise la flamme avec une légère élévation de la température maximale et une diminution des fractions massiques de CO, CO2 et NOx. Le remplacement d’une fraction de 10% où même 20% du gaz principal par l’hydrogène améliore les performances des installations et ne nécessite aucune modification sur les systèmes de combustion. / Fuel blending represents a promising approach for reducing harmful emissions from combustion systems. The addition of hydrogen to hydrocarbon fuels affects both chemical and physical combustion processes. These changes affect among others flame stability, combustor acoustics, pollutant emissions and combustor efficiency. Only a few of these issues are understood. Therefore, it is important to examine these characteristics to enable using blend fuels in practical energy systems productions. The experimental approach is restricted in general to specific operating conditions (temperature, pressure, H2 percentage in the mixture, etc.) due to its high costs. However, the numerical simulation can represent a suitable less costly alternative. The aim of this study done at ICARE is to complete the experiments. Equivalence ratio and hydrogen enrichment effects on lean methane/air flame structure were studied. The increase of the equivalence ratio, increases flame temperature and stability but produces more CO, CO2 and NOx. Hydrogen blending, increases flame stability and reduces emissions. The replacement of 10% or 20% of the fuel by hydrogen enhances installation efficiency with no modifications needed on the combustion system.
33

Simulation des Grandes Echelles de flammes de spray et modélisation de la combustion non-prémélangée / Large Eddy Simulation of spray flames and modelling of non-premixed combustion

Shum-Kivan, Francis 15 June 2017 (has links)
La combustion d’hydrocarbures représente encore aujourd’hui une part très majoritaire de la production d’énergie dans le monde, et en particulier dans l’industrie aéronautique. La plupart des brûleurs industriels sont alimentés par un carburant sous forme liquide, injecté directement dans la chambre de combustion, générant ainsi de fortes interactions entre le spray, l’écoulement turbulent et la flamme. Dans le but d’acquérir une meilleure compréhension de la structure complexe des flammes de spray, une étude numérique a été réalisée sur la configuration du brûleur diphasique KIAI, caractérisée de façon précise et complète expérimentalement. Une approche de type simulation des grandes échelles a été utilisée pour simuler la phase gazeuse tandis que la phase liquide était résolue selon un formalisme Lagrangien déterministe (LES-DPS). L’analyse détaillée de la structure de flamme de spray permet de mettre en exergue le rôle important de la combustion non prémélangée dans ce type de flamme. Cela a motivé dans une seconde étape le développement d’une nouvelle approche pour modéliser les flammes de diffusion turbulentes. Le modèle présenté s’appuie sur la réponse des flammes de diffusion laminaires au maillage, à l’étirement et au plissement. Le dégagement de chaleur global de la flamme a été analysé dans des configurations de complexité croissante, et la capacité du modèle à le décrire a été évaluée. / The combustion of hydrocarbons still represents a major part of the worldwide production of energy, especially in the aeronautical industry. Most industrial burners are fed with liquid fuel that is directly injected in the combustion chamber, generating a strong interaction between the spray, the turbulent flow and the flame. In order to provide a better understanding of turbulent spray flame complex structures, a numerical study has been performed on the two-phase flow burner KIAI which has been experimentally fully characterized. Numerical simulations consist of Large Eddy Simulation coupled to Discrete Particle Simulation for the dispersed phase (LES-DPS). A detailed analysis of the flame structure shows that non-premixed combustion plays an important role in this type of spray flame. This motivates, in a second step of the present work, the development of a new approach to model turbulent diffusion flames. The model is based on the response to the mesh, strain rate and wrinkling. The global flame heat release is analyzed through configurations of increasing complexity and the capacity of the model to describe it is evaluated.
34

Numerical modelling of compressible turbulent premixed hydrogen flames

Turquand D'Auzay, Charles January 2016 (has links)
Turbulent combustion has a profound effect on the way we live our lives; homes and businesses predominantly rely on power generated by burning some form of fuel, and the vast majority of transport of passengers and cargo are driven by combustion. Fossil fuels remain readily available and relatively cheap, and so will continue to power the modern world for the foreseeable future. Combustion of fossil fuels produces emissions that detrimentally affect air quality, particularly in highly-populated cities, and are also widely believed to be contributing to global climate change. Consequently, increasing attention is being focused on alternative fuels, increased efficiency and reduced emissions. One alternative fuel is hydrogen, which introduces challenges in end-usage, storage and safety that are not encountered with more conventional fuels. Advances in computational power and software technology means that numerical simulation has a growing role in the development of combustors and safety evaluation. Despite these advances, many challenges remain; the broad range of time and length scales involved are coupled with complex thermodynamics and chemistry on top of turbulent fluid mechanics, which means that detailed simulations of even relatively-simple burners are still prohibitively expensive. Engineering turbulent flame models are required to reduce computational expense, and the challenge is to retain as much of the flow physics as possible. Furthermore, the choice of numerical approach has a significant effect on the quality of simulation, and different target applications place different demands on the numerical scheme. In the case of hydrogen explosion, the approach needs to be able to capture a range of physical behaviours including turbulence, low-speed deflagration, high-speed shock waves and potentially detonations. One such numerical approach that has enjoyed widespread success is finite volumes schemes based on the Godunov method. These methods perform well at all speeds, and have positive shock-capturing capability, but recent studies have demonstrated difficulties with numerical stability for more complex thermodynamics, specifically in the case of fully-conservative methods for multi-component fluids with varying thermodynamic properties. A recent development is the so-called double-flux method, which retains many of the positive properties of the fully-conservative approaches and does not suffer from the same numerical instabilities, but is quasi-conservative and involves additional computational expense. The present work consolidates the state-of-the-art in the literature, and considers two equation sets, based on mass fraction and volume fraction, respectively, along with fully-conservative and quasiconservative schemes. Comprehensive validation and evaluation of the different approaches is presented. It was found that both quasi-conservative approaches performed well, with a better conservative behaviour for the quasi-conservative volume fraction, but a better stability for the quasi-conservative mass fraction. Finally, the numerical tool developed is applied to turbulent combustion of premixed hydrogen in the context of the semi-confined experiments from the University of Sydney. The LES results showed an good overall agreement with the experimental data, and the critical parameters such as overpressure and flame speed where globally well captured, highlighting the large potential of LES for safety analysis.
35

Large eddy simulation of premixed combustion using flamelets

Langella, Ivan January 2016 (has links)
Large Eddy Simulation (LES) has potential to address unsteady phenomena in turbulent premixed flames and to capture turbulence scales and their influence on combustion. Thus, this approach is gaining interest in industry to analyse turbulent reacting flows. In LES, the dynamics of large-scale turbulent eddies down to a cut-off scale are solved, with models to mimic the influences of sub-grid scales. Since the flame front is thinner than the smallest scale resolved in a typical LES, the premixed combustion is a sub-grid scale (SGS) phenomenon and involves strong interplay among small-scale turbulence, chemical reactions and molecular diffusion. Sub-grid scale combustion models must accurately represent these processes. When the flame front is thinner than the smallest turbulent scale, the flame is corrugated by the turbulence and can be seen as an ensemble of thin, one-dimensional laminar flames (flamelets). This allows one to decouple turbulence from chemistry, with a significant reduction in computational effort. However, potentials and limitations of flamelets are not fully explored and understood. This work contributes to this understanding. Two models are identified, one based on an algebraic expression for the reaction rate of a progress variable and the assumption of fast chemistry, the other based on a database of unstrained flamelets in which reaction rates are stored and parametrised using a progress variable and its SGS variance, and their potentials are shown for a wide range of premixed combustion conditions of practical interest. The sensitivity to a number of model parameters and boundary conditions is explored to assess the robustness of these models. This work shows that the SGS variance of progress variable plays a crucial role in the SGS reaction rate modelling and cannot be obtained using a simple algebraic closure like that commonly used for a passive scalar. The use of strained flamelets to include the flame stretching effects is not required when the variance is obtained from its transport equation and the resolved turbulence contains predominant part of the turbulent kinetic energy. Thus, it seems that SGS closure using unstrained flamelets model is robust and adequate for wide range of turbulent premixed combustion conditions.
36

Effect of hydrogen addition and burner diameter on the stability and structure of lean, premixed flames

Kaufman, Kelsey Leigh 01 May 2014 (has links)
Low swirl burners (LSBs) have gained popularity in heating and gas power generation industries, in part due to their proven capacity for reducing the production of NOx, which in addition to reacting to form smog and acid rain, plays a central role in the formation of the tropospheric ozone layer. With lean operating conditions, LSBs are susceptible to combustion instability, which can result in flame extinction or equipment failure. Extensive work has been performed to understand the nature of LSB combustion, but scaling trends between laboratory- and industrial-sized burners have not been established. Using hydrogen addition as the primary method of flame stabilization, the current work presents results for a 2.54 cm LSB to investigate potential effects of burner outlet diameter on the nature of flame stability, with focus on flashback and lean blowout conditions. In the lean regime, the onset of instability and flame extinction have been shown to occur at similar equivalence ratios for both the 2.54 cm and a 3.81 cm LSB and depend on the resolution of equivalence ratios incremented. Investigations into flame structures are also performed. Discussion begins with a derivation for properties in a multicomponent gas mixture used to determine the Reynolds number (Re) to develop a condition for turbulent intensity similarity in differently-sized LSBs. Based on this requirement, operating conditions are chosen such that the global Reynolds number for the 2.54 cm LSB is within 2% of the Re for the 3.81 cm burner. With similarity obtained, flame structure investigations focus on flame front curvature and flame surface density (FSD). As flame structure results of the current 2.54 cm LSB work are compared to results for the 3.81 cm LSB, no apparent relationship is shown to exist between burner diameter and the distribution of flame surface density. However, burner diameter is shown to have a definite effect on the flame front curvature. In corresponding flow conditions, a decrease in burner diameter results a broader distribution of curvature and an increased average curvature, signifying that compared to the larger 3.81 cm LSB, the flame front of the smaller burner contains tighter, smaller scale wrinkling.
37

A Computational Study of Ammonia Combustion

Khamedov, Ruslan 05 1900 (has links)
The utilization of ammonia as a fuel is a pragmatic approach to pave the way towards a low-carbon economy. Ammonia compromises almost 18 % of hydrogen by mass and accepted as one of the hydrogen combustion enablers with existing infrastructure for transportation and storage. From an environmental and sustainability standpoint, ammonia combustion is an attractive energy source with zero carbon dioxide emissions. However, from a practical point of view, the direct combustion of ammonia is not feasible due to the low reactive nature of ammonia. Due to the low combustion intensity, and the higher nitrogen oxide emission, ammonia was not fully investigated and there is still a lack of fundamental knowledge of ammonia combustion. In this thesis, the computational study of ammonia premixed flame characteristics under various hydrogen addition ratios and moderate or intense low oxygen dilution (MILD) conditions were investigated. Particularly, the heat release characteristics and dominant reaction pathways were analyzed. The analysis revealed that the peak of heat release for ammonia flame occurs near burned gas, which raises a question regarding the physics of this. Further analysis identified the dominant reaction pathways and the intermediate species (NH2 and OH), which are mainly produced in the downstream and back diffused to the leading edge and produce some heat in the low-temperature zone. To overcome low reactivity and poor combustion performance of pure ammonia mixture, the onboard ammonia decomposition to hydrogen and nitrogen followed by blending ammonia with hydrogen is a feasible approach to improve ammonia combustion intensity. With increasing hydrogen amount in the mixture, the enhancement of heat release occurs due to both transport and chemical effect of hydrogen. Another approach to mitigate the low reactive nature of ammonia may be eliminated by applying the promising combustion concept known as MILD combustion. The heat release characteristics and flame marker of ammonia turbulent premixed MILD combustion were investigated. The high fidelity numerical simulation was performed to answer fundamental questions of ammonia turbulent premixed combustion characteristics.
38

Effects of Swirl Number and Central Rod on Flow in Lean Premixed Swirl Combustor

Yellugari, Kranthi 21 October 2019 (has links)
No description available.
39

The Development of a Correlation to Predict the Lean Blowout of Bluff Body Stabilized Flames with a Focus on Relevant Timescales and Fuel Characteristics

Huelskamp, Bethany C. 29 May 2013 (has links)
No description available.
40

Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine

Hlaing, Ponnya 23 August 2022 (has links)
The road transport sector, dominated by internal combustion engines, accounts for as high as 23% of annual carbon emissions and is considered the major area where urgent carbon reduction strategies are required. Natural gas is considered one of the intermediate fuels to reduce carbon emissions before net carbon neutral solutions can be achieved. Methane (CH4), a major constituent of natural gas, has the highest hydrogen-to-carbon ratio among the naturally occurring hydrocarbons, and the CO2 emission from natural gas combustion is around 25% less than diesel combustion. Lean combustion shows promises for improved engine efficiency, thereby reducing carbon emissions for a given required power output. However, igniting lean natural gas mixtures requires high ignition energy, beyond the capability of spark ig nition. The pre-chamber combustion (PCC) concept can provide the required ignition energy with relatively simple components. While most pre-chamber designs found in the literature are bulky and require extensive cylinder head modifications or complete engine redesign, the narrow-throat pre-chamber design can readily fit the diesel injector pockets of most heavy-duty engines without the need for substantial hardware modifications. The unique pre-chamber design is significantly different from the contemporary pre-chamber geometries, and its engine combustion phenomena and operating characteristics are largely unknown. This thesis work investigates the effect of important pre-chamber dimensions, such as the volume, nozzle hole diameter, and throat diameter, on the engine operating characteristics and emission trends. The experiments focus on the lean operation with excess air ratios (λ) exceeding 1.6, which can be achieved by auxiliary fuel injection into the pre-chamber. The air-fuel mixture formation process inside the pre-chamber is also investigated by employing 1-D and 3-D CFD simulations, where the engine experiments provided the boundary conditions. From the simulation results, a correlation between the injected and the trapped fuel in the pre-chamber is proposed by theoretical scavenging models to estimate the air-fuel ratio in the pre-chamber with high accuracy. Although the studies largely rely on thermodynamic engine experiments, the 1-D engine simulation implements the engine studies in estimating the mixture composition and heat transfer losses from the engine.

Page generated in 0.0522 seconds