Spelling suggestions: "subject:"[een] PULP"" "subject:"[enn] PULP""
1051 |
The Influence of Xylan on Precipitation and Filtration Properties of Lignin : A Study in the Context of the LignoBoost Process / Inverkan av xylan på utfällning och filtrering av sulfatligninSchneider, Helen, Schneider, Lynn January 2016 (has links)
The LignoBoost process is a valuable supplement to the Kraft process. It can increase the pulp production rate of a Kraft mill and it enables lignin separation from black liquor with a high degree of purity. However, residual xylan in black liquor has been observed to increase filtration resistance of lignin during the LignoBoost process. In order to uncover underlying mechanisms, this thesis investigates the potential influence of xylan during lignin precipitation and filtration, which are the two main steps of the LignoBoost process. For this purpose experiments based on a model system were designed. Model liquors consisted of lignin and xylan as the only organic compounds and contained lower salt concentrations (4.2-5.9 wt%) compared to black liquor. Furthermore, reference liquors were prepared without xylan addition. Precipitation mechanisms were studied in the onset precipitation region (i.e. alkaline regime) by in-situ focused beam reflectance measurements (FBRM) during step-by-step acidic precipitation of the model liquor. It was found that the onset precipitation pH does not change with the presence of xylan as all liquors started precipitation around pH 9.15. The filtration process was investigated on model liquors that had been precipitated by fast acidification to acidic regimes (pH 6.5-2.87). The use of FBRM during acid precipitation of model liquors suggested that temperature had a significant influence on the chord length distribution (CLD) of the particles. In all filtration experiments, a decrease in CLD was observed when the temperature was changed from 80 °C to 25 °C. Moreover, this thermal instability of particles seemed to be higher when added xylan was present in the liquor. The investigation of the resulting filer cakes with HPLC showed that xylan was evenly distributed through the cake. Further findings on the influence of xylan were impeded due to variations in ionic strength in the model liquors. It was found that the effect of ionic strength on filtration properties and particle sizes overshadows the effect of xylan. Higher ionic strength was observed to yield a lower filtration resistance, a higher solidosty, larger particles and lower solid surface area, as investigated by filtration measurements, laser diffraction and BET analysis. Finally, xylan was fluorescently tagged (i.e. dyed) with Remazol Brilliant Blue R to investigate xylan position in the ligninxylan filer cake, using a confocal fluorescence microscope. However, due to the autofluorescence of lignin as well as low emission intensity of the synthesized dyed xylan, xylan could not been tracked within the lignin particle. Nevertheless, valuable insight was gained into the preparation of dyed xylan and the bond stability.
|
1052 |
Emulsifying properties of cellulose oxalate and pectin from Norway spruce bark / Emulsions egenskaper hos cellulosaoxalat och pektin från norsk granbarkHussain, Semonti January 2022 (has links)
Nanocellulose is a sustainable material and has shown interesting properties in various applications. One such application is Pickering emulsion, where the nanocellulose stabilizes the oil and water interface. Thus, this project aimed to evaluate a new type of nanocellulose, cellulose oxalate (COX), derived from different sources, dissolving pulp and bark, as a potential emulsifier. The properties of the nanocellulose, such as the chemical composition, morphology, aspect ratio, viscosity, and surface tension, are analyzed to determine how it affects the Pickering emulsion. Pectin has reported having emulsifying properties. Therefore, pectin derived from the bark was also studied as a potential emulsifier. The emulsion capacity and emulsion stability of the Pickering emulsion were estimated. Additionally, the emulsions were observed and visualized in an optical microscope, and it showed that all Pickering emulsions were successful. The COX and pectin particles were successfully adsorbed at the interface to form individual droplets which were stable enough not to coalescence. With the images from AFM, the aspect ratio and morphology of the particles were measured. COX pulp had an average width of 5.5 nm and an average length of 372 nm. COX bark had an average width of 3.9 nm and an average length of 257 nm. Notably, COX pulp does have a slightly higher aspect ratio than COX bark. DLS was another way the particle size was measured. However, it was not a suitable technique because both COX did indicate a relatively polydisperse system and are therefore not suitable to be measured by DLS. Furthermore, the viscosity of the COX pulp and COX bark suspensions were measured with an Ubbelohde capillary viscometer which was not an ideal method because the COX suspensions were too thick and gel-like for the instrument and got clogged constantly. As expected, the surface tension decreased steadily, more so for COX pulp than COX bark with increasing concentration. Then again, this means that COX has a hydrophobic property that does reduce the surface tension of water. Lastly, the carbohydrate analysis did indicate that both COX do have a high amount of glucose. Moreover, both COX did also show a significant amount of other components. Overall, this study does conclude that COX pulp, COX bark, and pectin did stabilize the Pickering emulsion to some degree, despite being inconsistent and can therefore be considered effective emulsifiers. / Nanocellulosa är ett hållbart material som har visat intressanta egenskaper i olika applikationer. En specifik applikation är Pickering emulsion, där nanocellulosan stabiliserar gränsytan mellan olje-och vatten fasen. Därav var syftet med detta projekt att utvärdera en ny typ av nanocellulosa, cellulosaoxalat (COX) producerad från olika källor såsom förhandlad pappersmassa och bark som ett potentiellt emulgeringsmedel. De olika egenskaperna hos nanocellulosan dvs. den kemiska sammansättningen, morfologin, partikelstorlek, viskositet och ytspänning undersöktes för att bestämma hur de påverkar Pickering emulsionen. Pektin har också rapporterats att ha emulgerande egenskaper. Därför studerades även pektin producerad från bark som ett potentiellt emulgeringsmedel. Emulsionskapaciteten och emulsionsstabiliteten hos Pickering emulsionen uppskattades. Dessutom observerades och visualiserades emulsionerna i ett optiskt mikroskop som visade att alla Pickering emulsioner var successiva. Det innebär att COX- och pektinpartiklarna adsorberades successivt vid gränsytan för att bilda individuella droppar som var stabila nog att inte koalescensera. Med hjälp av bilderna från AFM mättes storleken på partiklarna och dess morfologi bestämdes. COX-massa hade en genomsnittlig bredd på 5,5 nm en medellängd på 372 nm. COX-bark hade en genomsnittlig bredd på 3,9 nm och en medellängd på 257 nm. Från resultatet, kan det noteras att COX-massa har något större partikelstorlek är COX-bark. DLS var ett annat sätt att mäta partikelstorleken. Dock, var det inte en lämplig teknik eftersom både COX-massa och COX-bark visade ett relativt polydisperst system och är därav inte lämplig att mättas i DLS. Vidare så mättes viskositeten för COX-massa och COX-bark med en Ubbelohde kapillärviskometer, vilket inte heller var en idealisk metod att mäta med eftersom COX lösningen var för tjock och gel-liknande och täppte till instrumentet. Däremot, som förväntad minskades ytspänningen stadigt med ökande koncentration. Detta var mer tydligt hos COX- massa än COX-bark. Oavsett så betyder det att COX har en hydrofob egenskap som minskar ytspänningen hos vatten. Sist men inte minst så indikerade kemiska sammansättningsanalysen att båda COX har en stor mängd glukos. De har även en betydande mängd av andra komponenter. Sammantaget drar denna studie slutsatsen att COX-massa, COX-bark och pektin stabiliserade Pickering emulsionen till en viss del relativt väl, trots att det var inkonsekvent så anses de vara effektiva emulsionsmedel.
|
1053 |
Wood properties and utilization of assorted hardwoodsSnow, Roger Dustin 11 May 2022 (has links)
This work is made up of three parts. Part one looks to establish design values for two types of three ply access mats from the U.S. South and Midwest. The mats were subject to 3 point bending tests to determine strength and stiffness values. Values for MOE (Modulus of Elasticity) and MOR (Modulus of Rupture) are reported by region and mat design. Part two tested five species groups of hardwoods for wear resistance and hardness. These species groups include white oak, red oak, ash, sweetgum and hickory. These tests for wear were performed on a Navy-Type Wear Tester according to ASTM D2394-17. Hardness specimens were tested with the Janka method according to ASTM D143-14. The third and final part looks at the impact of thermomechanical densification on rate of wear in five species groups of hardwood. The species groups were white oak, red oak, ash, sweetgum and hickory. Samples were pressed at 1000psi at temperature of 350 degrees Fahrenheit, in order to plasticize the wood and densify it at the same time. These samples were then tested on the Navy-Type Wear Tester to determine whether densification had an impact on wear resistance.
|
1054 |
Application of Ozone in Dissolved Air Flotation (DAF) for Enhanced Removal of TOC and Suspended Solids in Pulp and Paper WastewatersBrown, Amy Patricia January 2016 (has links)
Pulp and paper mills are one of the top consumers of water related to industrial manufacturing, which ultimately leads to a large volume of heavily contaminated wastewater. This discharged effluent can have a harmful effect on the receiving aquatic environment and cause further ramifications downstream. Thus, a technically feasible and cost effective treatment solution for safe release from the mill is essential. Dissolved air flotation (DAF) has many applications and involves the formation of air microbubbles triggered by a drop to atmospheric pressure. When introduced into the wastewater, these microbubbles attach to the floc particles present and float to the surface. Another water treatment technology is ozone, a powerful oxidant, and has been widely used in water and wastewater treatment over recent decades, including color reduction in pulp and paper mill wastewater treatment. This thesis studied the effect pre-ozonation has on the DAF process in treating pulp and paper mill secondary effluent. Wastewaters from three mills with different initial water quality parameters were used, especially chemical oxygen demand (COD), turbidity, and color. The most suitable coagulant and coagulant aid, aluminum chlorohydrate and cationic polymer NS 4700P respectively, were selected, and an effective bench-scale experimental procedure was established. Pre-ozonation did not reduce the need for coagulant due to little change in the overall COD, color, or turbidity removal. However, ozonation did reduce color before coagulation, and the ultimate target removal of COD to 90 ppm was met with the conditions chosen. / Environmental Engineering
|
1055 |
A Novel Biomimetic Scaffold for Guided Tissue Regeneration of the Pulp - Dentin ComplexGangolli, Riddhi Ajit January 2016 (has links)
60 % of school children have some form of untreated tooth decay or have suffered trauma to the front teeth which results in pulp damage. If left untreated, these teeth are susceptible to premature fracture/loss under daily stresses. In cases of adolescent tooth loss, teenagers cannot get dental implants until after the growth spurts; their only option is using removable dentures which lowers their quality of life. Conventional endodontic treatment (root canal treatment) is used in cases of pulp necrosis, but cannot be performed in immature permanent teeth due to major differences in tooth anatomy. Currently the American Dental Academy has approved a procedure called Regenerative Endodontic Treatment (RET) for such cases, but the outcomes are still unpredictable and the method is largely unreliable. One issue that we are trying to address in this work is the regeneration of the pulp-dentin complex (PDC), specifically the interface. Endeavors in regenerating either pulp or dentin have been successful individually, but the interface region is the anatomical and physiologic hallmark of the PDC and has not been addressed. We have proposed a biomimetic scaffold to facilitate early stage stratification of these different tissues and allow recapitulation of their interface. Tissue engineering principles and biomaterial processing techniques were used simultaneously to encourage dental pulp stem cells into mineralize selectively only on one side. This effectively allows the scaffold to serve as the interface region between the hard dentin and the soft vascular pulp. / Bioengineering
|
1056 |
Towards Agricultural Application of Wood Pulp FibresMoshtagh, Nazanin 12 1900 (has links)
Sustainable agriculture is a crucial factor to be considered in order to meet the growing demand for food production. The need for low cost and highly functional materials to provide the most efficient cultivation process has led the agriculture industry to consume petrochemical and mineral based material in an enormous amount. Thus, disposal of the used mulch materials has become a serious environmental issue. In this work, the possibility of using wood pulp fibre in two distinct applications in agriculture is investigated. First, agricultural mulching is the subject of the study and second, we focus on using wood pulp fibre as growing medium in greenhouses.
Mulching in agriculture is an essential practice in order to have high crop yield, healthy products, and more efficient cultivation process. Over the years, agricultural mulch has been made out of a variety of materials. The most common of all is plastic mulch due to its low price and high functionality. However, the problems associated with applying and removing the enormous load of plastic and their disposal have made it an option far from ideal. Therefore, there is a need to develop mulches based on biodegradable materials. Paper-based mulch is one of the candidates, In the first chapter of this work, with a review of previous works in this area, we attempt to develop a new spray-able mulch based on wood pulp fibre. A novel foam forming method is utilised to deposit wood pulp fibres in combination with other chemicals as an evenly distributed fibre network on a porous bed. Currently available paper based-mulch is of a very high basis weight. In first part of this work, application of a foam formed low basis weight paper-based mulch is investigated. Whereas, in the second chapter, the use of wood pulp fibres in a similar function as “rockwool” in soilless greenhouse farming is investigated.
Rockwool is named after fibres made of melted minerals at temperatures as high as 2000°C. Rockwool is used as blocks for seeds growth and propagation and as an alternative for soil in greenhouses. The feasibility of microenvironment control of the rockwool blocks in crop production plus its low cost have made is popular. However, their disposal has always been an environmental issue. The biodegradability of wood pulp fibres is a great advantage over mineral fibres used in rockwool. In the second chapter of current work, we study the possibility of using wood pulp fibres as carriers for agriculturally beneficial chemicals. Specifically, we focus on binding and release properties of small organic molecules from wood pulp fibres. The goal is to achieve an understanding of the capability of wood pulp fibres to be used in building biodegradable growing medium blocks in greenhouses. / Thesis / Master of Applied Science (MASc)
|
1057 |
Adhesives with Controllable Degradability for Wet Cellulosic Materials / Degradable Cellulose Wet AdhesivesYang, Dong January 2018 (has links)
Cellulose wet adhesives are applied to enhance the wet strength of paper products by binding individual paper fibers together. However, the recycling of the wet strength paper is a challenge as the fibers are hard to re-disperse in water. This project demonstrates new strategies for developing cellulose wet adhesives with controllable degradability, facilitating the recycling of wet strength papers.
In this project, regenerated cellulose membranes were used to simulate paper fibers. In adhesion measurements, two wet cellulose membranes were laminated with a thin layer of adhesive (1–30 mg/m2), and the 90-degree wet-peel was used as a measure of cellulose wet adhesion. It was shown that the wet-peel was a simple and reliable method to evaluate the wet adhesives for paper products.
Cellulose wet adhesives, in the form of microgels or linear polymers, were synthesized by incorporation of hydrazide, amine or azetidinium functional groups that can form covalent bonds to cellulose surfaces. Two strategies to design degradable adhesives were demonstrated in this project. 1) Reductant-responsive microgel adhesives were created by introducing cleavable disulfide linkages, either in the polymer chains tethering adhesive groups or as the microgel crosslinks. More than 70% reduction in wet adhesion was achieved after exposure to a reductant. 2) Degradable polymer cohesive bonds were used to “switch off” the cellulose wet adhesion. This adhesive was created by introducing labile boronate-dextran complexes to the PVAm adhesive layer between cellulose surfaces. The introduction of this new interaction between PVAm chains enhanced the cellulose wet adhesion. In response to subtle pH changes or the presence of monosaccharides, the wet adhesion decreased by 60%. / Thesis / Doctor of Philosophy (PhD) / Wet strength is important for paper products such as paper towels and paper packaging. In paper manufacturing, cellulose wet adhesives are applied to enhance the strength of wet papers by “gluing” together individual cellulose fibers. However, the recycling of wet strength papers is a challenge because the current adhesives prevent the easy disintegration of waste paper back to a suspension of discrete cellulose fibers. As an important part of the bio-based economy, the next generation of paper products are required to be both strong in water and easy to recycle. This thesis explores new designs for wet-strength adhesives that will facilitate recycling.
Both nanoparticles and linear polymers were synthesized in this study as cellulose wet adhesives. Many important properties of wet adhesives were probed, including the size of nanoparticles, the pre-treatment of cellulose surfaces, the dosage of adhesives and the choice of adhesive chemistries. A few types of novel cellulose wet adhesives with controllable degradability were synthesized and evaluated. I demonstrated that the cellulose wet adhesion can be “switched off” in response to subtle pH changes, reducing agents or sugars, showing a promising start for the recycling of wet strength papers.
|
1058 |
Investigation of Liquid Trapping Following Supercritical Fluid ExtractionMcDaniel, Lori Heldreth 30 September 1999 (has links)
Supercritical fluid extraction (SFE) is an alternative to traditional extractions with organic solvents. SFE consists of removing the analyte(s) from the matrix, solubilizing them, moving the analyte(s) into the bulk fluid, and sweeping the fluid containing the analyte(s) out of the extraction vessel.
As the fluid leaves the extraction vessel, decompression of the fluid occurs, changing its volume and temperature which can lead to analyte loss.
This work focussed on the trapping process with the restrictor immersed in a liquid after SFE. Experiments compared the effects of trapping parameters on the collection efficiencies of fat-soluble vitamins of similar polarities and structures. The most important variable was the selection of collection solvent and its physical properties, such as viscosity, surface tension and density were found to be important.
Additionally, adding a modifier to the collection solvent in an attempt to change its physical properties and influence collection efficiencies for a polarity test mix was studied. Addition of a modifier can improve collection efficiencies and allow higher collection temperature to be used, but the modifier did not increase trapping recoveries to the extent that collection pressurization did.
The occurrence of a methylation reaction of decanoic acid during the SFE and collection processes, using a methanol modified fluid or collection solvent was investigated. The majority of the reaction occurred during the collection process and the degree of methylation was found to be dependent on temperature, but not on static or dynamic extraction time. When no additional acidic catalyst other than carbon dioxide in the presence of water was present, conversion was limited to about 2%, but was quantitative with an added acidic catalyst.
The last portion of this work involved the application of the SFE process to the extraction and analysis of extractable material in eight hardwood and softwood pulp samples. Grinding the samples increased extractable fatty acid methyl esters (FAMEs) by ten-fold, and in-situ derivatizations resulted in higher FAME recoveries than derivatization after SFE. Liquid trapping enhanced recoveries of lower FAMEs when compared to tandem (solid/liquid) trapping. In-situ acetylations sometimes yielded acetylated glucoses. Large differences in FAMEs concentrations were seen for hardwood samples, but lesser differences were seen for the softwood pulp samples. / Ph. D.
|
1059 |
The anaerobic digestion of a semichemical pulp mill wasteSharp, Benjamin T. January 1949 (has links)
M.S.
|
1060 |
The use of advanced treatment methods for removal of color and dissolved solids from pulp and paper wastewaterSullivan, Elizabeth Carol January 1986 (has links)
This study investigated the use of activated carbon and ion exchange for the removal of color and dissolved solids from pulp and paper wastewater generated by the Union Camp Corporation mill in Franklin, Virginia. The objective of the treatment was to provide a high quality effluent suitable for direct recycling. This advanced treatment followed pretreatment by lime, alum, or ferric chloride. Required effluent quality was defined as being 5 Pt-Co units color and 75 mg/L chloride. Granular and powdered carbons, manufactured by the Westvaco Corporation, were utilized in the study. The ion exchange resin investigated was Amberlite IRA-68, manufactured by Rohm and Haas. Carbon treatment consisted of batch and column operation; ion exchange column treatment was used.
The results of the study indicated that the required effluent quality was achieved by activated carbon and ion exchange treatment of wastewater that had been chemically pretreated. The most successful treatment schemes for the biotreated effluent were pretreatment with 500 mg/L alum or 2500 mg/L lime, followed by carbon column treatment for color polishing and ion exchange for chloride removal. The lime pretreated sample produced an effluent containing less than 5 Pt-Co units color as necessary for reuse, while the alum pretreated sample would require dilution with make-up water or additional treatment (i.e. ion exchange) to obtain recycle quality.
The use of ion exchange for chloride removal is not practical due to the preferential exchange for sulfates. Until such time as sulfate can be eliminated from the wastewater source, other methods of dissolved solids removal should be investigated. / M. Eng.
|
Page generated in 0.0557 seconds