Spelling suggestions: "subject:"[een] QUANTUM DOTS"" "subject:"[enn] QUANTUM DOTS""
1 |
Ultrafast carrier and gain dynamics in strongly confined semiconductor quantum dots.Giessen, Harald Willi. January 1995 (has links)
This thesis investigates the carrier and gain dynamics of semiconductor quantum dots in the strong quantum confinement regime (i.e. the dot radius is smaller than the bulk excitonic Bohr radius). The materials under investigation are InP and CdSe. We can summarize our findings as follows: For the first time, the quantum confined ground state in InP quantum dots has been observed at room temperature by femtosecond spectral holeburning. This is the first confirmation of the observation of a strongly confined quantum dot made of III-V semiconductor materials. In CdSe quantum dots with a radius of half the bulk exciton Bohr radius, the carrier and gain dynamics have been investigated. The predicted phonon bottleneck, which should slow down carrier relaxation up to nanoseconds, has not been found. The carrier relaxation rates are rather on the order of 1 eV/ps. Gain has been found for the first time in strongly confined quantum dots. The existence of gain was proven by spectral holeburning in the gain region. The gain buildup and decay dynamics have been studied on a femtosecond and picosecond timescale. A multi-level model including biexcitons accounts for the gain formation. The model has been confirmed by three-beam spectral holeburning experiments and femtosecond pump-probe experiments with circularly polarized light. Some quantum dots did not show gain under high optical excitation but instead exhibited photodarkening. The carrier separation and localization dynamics of this photodarkening process has been studied on a femtosecond timescale. For the first time, the shift of the bleaching towards lower energy during the localization process could be observed on a femtosecond timescale. Finally, pulse propagation in bulk CdSe at multiple Pi-pulses has been studied. For the first time, strong evidence for the observation of self induced transparency in semiconductors has been found. Also, optical precursors, probably of nonlinear nature, have been found.
|
2 |
Investigation into the growth of non-polar and semi-polar InGaN quantum dotsEmery, Robert Michael January 2015 (has links)
No description available.
|
3 |
Polymers as Multidentate Ligands for Surface Modification and Hierarchical Organization of Colloidal Quantum DotsWang, Mingfeng 30 March 2011 (has links)
This thesis describes the design and synthesis of homopolymers and copolymers for tuning surface properties of colloidal semiconductor quantum dots (QDs), and directing QD self-assembly to create well-defined 3D structures in which the spatial organization of QDs and other functional materials (e.g. conjugated polymers) is properly controlled. A common feature of all of the polymers described in this thesis is that they contain multiple pendant anchoring groups such as tertiary amines, pyridines and acrylic acids, which bind strongly to QD surfaces as multidentate ligands.
This thesis starts by describing a quantitative analytical method based on size exclusion chromatography (SEC) to characterize the interaction of poly(2-N,N-dimethylaminoethyl methacrylate) (PDMA) with TOPO-coated CdSe QDs. In addition, the separation of polymer-bound QDs from excess free polymer can be scaled up by preparative high-performance liquid chromatography.
The second part of this thesis explores a method to disperse CdSe and core/shell CdSe/ZnS QDs into water using a poly(ethylene glycol-b-N,N-dimethylaminoethyl methacrylate) (PEG–b–PDMA) diblock copolymer. Alternatively, statistical copolymers, such as poly(oligoethyleneglycol)-co-PDMA (POEG-co-PDMA) and poly(N,N-dimethylacrylamide)-based statistical copolymers carrying pendant pyridine or imidazole groups play the same role as PEG–b–PDMA for dispersion of the QDs into water.
The third part of this thesis describes the synthesis and characterization of a water-soluble pH-responsive PDMA-grafted polythiophene (denoted as PT-g-PDMA). The relatively rigid and extended conformation of the polythiophene backbones provides new opportunity for studying the correlation of between optical responses of conjugated polymers and their conformational transitions. In addition, the favorable interaction between the PDMA arms of PT-g-PDMA and CdSe nanorods allows enhanced interface-compatibility of the nanorods with the polythiophene backbone.
The last part of this thesis presents a straightforward and versatile approach to achieving nanoscale co-organization of colloidal QDs (e.g. CdSe, CdSe/ZnS core/shell or PbS QDs) with conjugated polymers (e.g. poly(3-hexylthiphene)) by using polymer micelles of poly(styrene-b-4-vinylpyridine) as the structural motif. The spatially defined organization allows photoinduced excited state interaction between the QDs and poly(3-hexylthiphene) at the micellar interface, reminiscent of structures of light harvesting complexes in nature. This strategy is also applicable to other morphologies of polymer self-assemblies, such as poly(styrene-b-acrylic acid) (PS-b-PAA) vesicles.
|
4 |
Polymers as Multidentate Ligands for Surface Modification and Hierarchical Organization of Colloidal Quantum DotsWang, Mingfeng 30 March 2011 (has links)
This thesis describes the design and synthesis of homopolymers and copolymers for tuning surface properties of colloidal semiconductor quantum dots (QDs), and directing QD self-assembly to create well-defined 3D structures in which the spatial organization of QDs and other functional materials (e.g. conjugated polymers) is properly controlled. A common feature of all of the polymers described in this thesis is that they contain multiple pendant anchoring groups such as tertiary amines, pyridines and acrylic acids, which bind strongly to QD surfaces as multidentate ligands.
This thesis starts by describing a quantitative analytical method based on size exclusion chromatography (SEC) to characterize the interaction of poly(2-N,N-dimethylaminoethyl methacrylate) (PDMA) with TOPO-coated CdSe QDs. In addition, the separation of polymer-bound QDs from excess free polymer can be scaled up by preparative high-performance liquid chromatography.
The second part of this thesis explores a method to disperse CdSe and core/shell CdSe/ZnS QDs into water using a poly(ethylene glycol-b-N,N-dimethylaminoethyl methacrylate) (PEG–b–PDMA) diblock copolymer. Alternatively, statistical copolymers, such as poly(oligoethyleneglycol)-co-PDMA (POEG-co-PDMA) and poly(N,N-dimethylacrylamide)-based statistical copolymers carrying pendant pyridine or imidazole groups play the same role as PEG–b–PDMA for dispersion of the QDs into water.
The third part of this thesis describes the synthesis and characterization of a water-soluble pH-responsive PDMA-grafted polythiophene (denoted as PT-g-PDMA). The relatively rigid and extended conformation of the polythiophene backbones provides new opportunity for studying the correlation of between optical responses of conjugated polymers and their conformational transitions. In addition, the favorable interaction between the PDMA arms of PT-g-PDMA and CdSe nanorods allows enhanced interface-compatibility of the nanorods with the polythiophene backbone.
The last part of this thesis presents a straightforward and versatile approach to achieving nanoscale co-organization of colloidal QDs (e.g. CdSe, CdSe/ZnS core/shell or PbS QDs) with conjugated polymers (e.g. poly(3-hexylthiphene)) by using polymer micelles of poly(styrene-b-4-vinylpyridine) as the structural motif. The spatially defined organization allows photoinduced excited state interaction between the QDs and poly(3-hexylthiphene) at the micellar interface, reminiscent of structures of light harvesting complexes in nature. This strategy is also applicable to other morphologies of polymer self-assemblies, such as poly(styrene-b-acrylic acid) (PS-b-PAA) vesicles.
|
5 |
Study on Characteristics of GaSb/GaAs Quantum Dots DevicesLan, Wei-zhe 05 July 2005 (has links)
Any object can emit infrared radiation if their temperature higher than 0K.Because of this,the photodetectors for infrared radition is very important in application. First,this paper will introduce the kinds and properties of infrared photodetectors but most important is the quantum dot infrared photodetectors.In second chapter,we use the basic physic concepts and mathematical equations to infer the photocurrent and dark current formula. According to the formula,we can see the relationship between current and quantum dot density,bias,donorconcentration,
Temperature. After we get the relationship,we can discuss the detectivity,noise properties, optical gain responstivity, differential photoconductivity. According to our research,the electron will be heated at very high ,bias and make the photoconductivity fairly smooth.Moreover,an increase in the effective temperature can result in the occurrence of the voltage range,where differential photoconductivity, is negative. It is important for a infrared photodetector to have high responsivity,detectivity,high working temperature,low dark current and low noise.Excepting this,to comprise a best infrared photodetector must have a good control on growth condition. Because of this,this paper will discuss the relationship between quantum dot and temperature,GRI time, growth thickness,deposited QD material.Finally,this paper find the best growth condition to form a quantum dot infrared photodetector.
|
6 |
Synthesis and characterization of an inhibitor labeled quantum dot affinity probe /Gégout, Claire. January 2008 (has links)
Thesis (M.S.)--University of Toledo, 2008. / Typescript. "Submitted as partial fulfillment of the requirements for the Master of Science degree in Chemistry." "A thesis entitled"--at head of title. Bibliography: leaves 82-85.
|
7 |
Properties of a polaron confined in a spherical quantum dot /Melnikov, Dmitriy V., January 2001 (has links)
Thesis (Ph. D.)--Lehigh University, 2001. / Includes vita. Includes bibliographical references (leaves 121-126).
|
8 |
Probing and electron tunneling of quantum dot systems /Wang, Shidong. January 2003 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 102-112). Also available in electronic version. Access restricted to campus users.
|
9 |
Charge control and energy level engineering in quantum-dot laser active regionsShchekin, Oleg Borisovich 28 August 2008 (has links)
Not available / text
|
10 |
Growth of site-controlled InAs quantum dots with tunable emission for future single photon sourcesJamil, Ayesha January 2013 (has links)
No description available.
|
Page generated in 0.1582 seconds