Spelling suggestions: "subject:"[een] RECONFIGURABLE INTELLIGENT SURFACE"" "subject:"[enn] RECONFIGURABLE INTELLIGENT SURFACE""
1 |
Unmanned Aerial Vehicles and Edge Computing in Wireless NetworksShang, Bodong 28 January 2022 (has links)
Unmanned aerial vehicles (UAVs) attract increasing attention for various wireless network applications by using UAVs' reliable line-of-sight (LoS) paths in air-ground connections and their flexible placement and movement. As such, the wireless network architecture is becoming three-dimensional (3D), incorporating terrestrial and aerial network nodes, which is more dynamic than the traditional terrestrial communications network. Despite the UAVs' advantages of high LoS path probability and flexible mobility, the challenges of UAV communications need to be considered in the design of integrated air-ground networks, such as spectrum sharing, air-ground interference management, energy-efficient and cost-effective UAV-assisted communications. On the other hand, in wireless networks, users request not only reliable communication services but also execute computation-intensive and latency-sensitive tasks. As one of the enabling technologies in wireless networks, edge computing is proposed to offload users' computation tasks to edge servers to reduce users' latency and energy consumption. However, this requires efficient utilization of both communication resources and computation resources. Furthermore, integrating UAVs into edge computing networks brings many benefits, such as enhancing offloading ability and extending offloading coverage region. This dissertation makes a series of fundamental contributions to UAVs and edge computing in wireless networks that include: 1) Reliable UAV communications, 2) Efficient edge computing schemes, and 3) Integration of UAV and edge computing.
In the first contribution, we investigate UAV spectrum access and UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS) for achieving reliable UAV communications. On the one hand, we study a 3D spectrum sharing between device-to-device (D2D) and UAVs communications. Specifically, UAVs perform spatial spectrum sensing to opportunistically access the licensed channels occupied by the D2D communications of ground users. The results show that UAVs' optimal spatial spectrum sensing radius can be obtained given specific network parameters. On the other hand, we study the beamforming and placement design for SARIS networks in downlink transmissions. We consider that the direct links between the ground base station (BS) and mobile users are blocked due to obstacles in the urban environment. SARIS assists the BS in reflecting the signals to randomly distributed mobile users. The results show that the proposed SARIS network significantly improves the weighted sum-rate for ground users, and the placement design plays an essential role in the overall system performance.
In the second contribution, we develop a joint communication and computation resource allocation scheme for vehicular edge computing (VEC) systems. The full channel state information (CSI) in VEC systems is not always available at roadside units (RSUs). The channel varies fast due to vehicles' mobility, and it is pretty challenging to estimate CSI and feed back the RSUs for processing the VEC algorithms. To address the above problem, we introduce a large-scale CSI-based partial computation offloading scheme for VEC systems. Using deep learning and optimization tools, we minimize the users' energy consumption while guaranteeing their offloading latency and outage constraints. The results demonstrate that the introduced resource allocation scheme can significantly reduce the total energy consumption of users compared with other computation offloading schemes.
In the third contribution, we present novel frameworks for integrating UAVs to edge computing networks to achieve improved computing performance. We study mobile edge computing (MEC) in air-ground integrated wireless networks, including ground computational access points (GCAPs), UAVs, and user equipment (UE), where UAVs and GCAPs cooperatively provide computation resources for UEs. The resource allocation algorithm is developed based on the block coordinate descent method by optimizing the subproblems of users' association, power control, bandwidth allocation, computation capacity allocation, and UAV placement. The results show the advantages of the introduced iterative algorithm regarding the reduced total energy consumption of UEs.
Finally, we highlight directions for future works to advance the research presented in this dissertation and discuss its broader impact across the wireless networks industry and standard-making. / Doctor of Philosophy / The fifth-generation (5G) cellular network aims to achieve a high data rate by having greater bandwidth, deploying denser networks, and multiplying the antenna links' capacity. However, the current wireless cellular networks are fixed on the ground and thus pose many disadvantages. Moreover, the improved system performance comes at the cost of increased capital expenditures and operating expenses in wireless networks due to the enormous energy consumption at base stations (BS) and user equipment (UE). More spectrum and energy-efficient yet cost-effective technologies need to be developed in next-generation wireless networks, i.e., beyond-5G or sixth-generation (6G) networks.
Recently, unmanned aerial vehicle (UAV) has attracted significant attention in wireless communications. Due to UAVs' agility and mobility, UAVs can be quickly deployed to support reliable communications, resorting to its line-of-sight-dominated connections in the air-ground channels. However, the sufficient available spectrum for extensive UAV communications is scarce, and the co-channel interference in air-air and air-ground connections need to be considered in the design of UAV networks. In addition to users' communication requests, users also need to execute intensive computation tasks with specific latency requirements. As such, edge computing has been proposed to integrate wireless communications and computing by offloading users' computation tasks to edge servers in proximity, reducing users' computation energy consumption and latency. Besides, integrating UAVs into edge computing networks makes efficient offloading schemes by leveraging the advantages of UAV communications. This dissertation makes several contributions that enhance UAV communications and edge computing systems performance, respectively, and present novel frameworks for UAV-assisted three-dimensional (3D) edge computing systems.
This dissertation addresses the fundamental challenges in UAV communications, including spectrum sharing, interference management, UAV 3D placement, and beamforming, allowing broadband, wide-scale, cost-effective, and reliable wireless connectivity. Furthermore, this dissertation focuses on the energy-efficient vehicular edge computing systems and mobile edge computing systems, where the UAVs are applied to achieve 3D edge computing systems. To this end, various mathematical frameworks and efficient joint communication and computation resource allocation algorithms are proposed to design, analyze, optimize, and deploy UAV and edge computing systems. The results show that the proposed air-ground integrated networks can deliver spectrum-and-energy-efficient yet cost-effective wireless services, thus providing ubiquitous wireless connectivity and green computation offloading in the future beyond-5G or 6G wireless networks.
|
2 |
mmWave Coverage Extension Using Reconfigurable Intelligent Surfaces in Indoor Dense Spaces / Utökad täckning för mmWave med hjälp av omkonfigurerbara intelligenta ytor i täta inomhusutrymmenLi, Zhenyu January 2023 (has links)
Millimeter-wave (mmWave) is widely investigated for indoor communication scenarios thanks to the available rich spectrum. However, the shortened antenna size and the high frequency make mmWave extra sensitive to blockages. Indoor dense space (IDS) is a specific type of indoor environment, where the compact geometry together with a high number of blocking objects and users make it hard to fulfill the data rate required by all of the users in the mmWave network. With the capability of redirecting signals, the reconfigurable intelligent surface (RIS) has the potential to overcome the attenuation brought by the blockage. Aside from the promising improvement in data rate brought by the RIS, the power supply for RIS is also a major concern in IDS due to the cabling and the batteries. Dynamic RIS has the capability of reconfiguring its phase-shifts to offer a higher gain in data rate with the price of consuming power. In comparison, by sacrificing the reconfigurability, static RIS does not require any power, cabling, or batteries but is expected to provide lower data rates. To find the balance between the performance and cost trade-off, the concept of self-sustainable RIS in IDS is proposed. This approach involves the utilization of specific RIS elements to harvest energy, thereby providing support for the power requirements of the RIS operation, consequently reducing the reliance on traditional cabling infrastructure. In this work, we compare the coverage extension effect brought by deploying static, dynamic, and self-sustainable RISs in the aircraft cabin which is a typical example of an IDS. To capture the propagation characteristics of a RIS in IDS, we first provide guidelines for modeling the RIS in the ray tracing (RT) simulator, and then we select the best locations to deploy RISs among three candidates. For each type of RIS deployment, we propose an optimization algorithm, which jointly configures the RIS phase-shifts and the time resources to provide the maximum equal achievable data rate for all of the users. Additionally, for the self-sustainable RIS, the working mode of each RIS element is also jointly configured such that each element is used either to reflect the incoming signal or to use the signal for energy harvesting. Based on the results, the signal propagation of a single base station (BS) can be extended from 3 rows to 11 rows by deploying static or dynamic RISs. The minimal achievable data rate is 35.4 Mbps with the static RISs and 45.3 Mbps with the dynamic RISs. The results indicate that due to the limitation of self-sustainable constraints, RISs with 16 elements are hard to cover the whole 11 rows in the considered cabin. Nevertheless, with self-sustainable RIS, 10 more UEs are covered compared to the case where no RIS is deployed. The minimal data rate with the help of the self-sustainable RISs within the coverage is 0.75 Mbps. The feasibility study shows that this energy requirement has a greater likelihood of being fulfilled as the number of elements in RIS increases. / Millimetervåg (mmWave) är allmänt undersökt för inomhuskommunikationsscenarier tack vare det tillgängliga rika spektrumet. Den förkortade antennstorleken och den höga frekvensen gör dock mmWave extra känslig för blockeringar. Indoor dense space (IDS) är en specifik typ av inomhusmiljö, där den kompakta geometrin tillsammans med ett stort antal blockerande objekt och användare gör det svårt att uppfylla den datahastighet som krävs av alla användare i mmWave-nätverket. Med förmågan att omdirigera signaler har reconfigurable intelligent surface (RIS) potentialen att övervinna dämpningen av blockeringen. Bortsett från den lovande förbättringen av datahastigheten som RIS ger, är strömförsörjningen för RIS också ett stort problem inom IDS på grund av kablarna och batterierna. Dynamic RIS har förmågan att omkonfigurera sina fasförskjutningar för att erbjuda en högre förstärkning i datahastighet med priset för att förbruka energi. I jämförelse, genom att offra omkonfigurerbarheten, kräver statisk RIS ingen ström, kablar eller batterier utan förväntas ge lägre datahastigheter. För att hitta balansen mellan prestanda och kostnadsavvägning föreslås konceptet med självförsörjande RIS i IDS. Detta tillvägagångssätt involverar användningen av specifika RIS-element för att skörda energi, vilket ger stöd för strömkraven för RIS-driften, vilket minskar beroendet av traditionell kabelinfrastruktur. I det här arbetet jämför vi den täckningsförlängningseffekt som uppstår genom att installera statiska, dynamiska och självförsörjande RIS i flygplanskabinen, vilket är ett typiskt exempel på en IDS. För att fånga utbredningsegenskaperna för en RIS i IDS ger vi först riktlinjer för modellering av RIS i ray tracing (RT)-simulatorn, och sedan väljer vi de bästa platserna för att distribuera RIS bland tre kandidater. För varje typ av RIS-distribution föreslår vi en optimeringsalgoritm, som gemensamt konfigurerar RIS-fasförskjutningarna och tidsresurserna för att tillhandahålla den maximalt lika möjliga datahastigheten för alla användare. Dessutom, för den självförsörjande RIS, är arbetsläget för varje RIS-element också gemensamt konfigurerat så att varje element används antingen för att reflektera den inkommande signalen eller för att använda signalen för energiskörd. Baserat på resultaten kan signalutbredningen av en enda base station (BS) utökas från 3 rader till 11 rader genom att distribuera statiska eller dynamiska RIS:er. Den minsta möjliga datahastigheten är 35,4 Mbps med statiska RIS och 45,3 Mbps med dynamiska RIS. Resultaten indikerar att på grund av begränsningen av självförsörjande begränsningar är RIS med 16 element svåra att täcka hela 11 rader i den övervägda kabinen. Ändå, med självförsörjande RIS, täcks 10 fler UE jämfört med fallet där ingen RIS är utplacerad. Den minimala datahastigheten med hjälp av de självförsörjande RIS:erna inom täckningen är 0,75 Mbps. Förstudien visar att detta energibehov har större sannolikhet att uppfyllas i takt med att antalet element i RIS ökar.
|
3 |
PhD ThesisJunghoon Kim (15348493) 26 April 2023 (has links)
<p> </p>
<p>In order to advance next-generation communication systems, it is critical to enhance the state-of-the-art communication architectures, such as device-to-device (D2D), multiple- input multiple-output (MIMO), and intelligent reflecting surface (IRS), in terms of achieving high data rate, low latency, and high energy efficiency. In the first part of this dissertation, we address joint learning and optimization methodologies on cutting-edge network archi- tectures. First, we consider D2D networks equipped with MIMO systems. In particular, we address the problem of minimizing the network overhead in D2D networks, defined as the sum of time and energy required for processing tasks at devices, through the design for MIMO beamforming and communication/computation resource allocation. Second, we address IRS-assisted communication systems. Specifically, we study an adaptive IRS control scheme considering realistic IRS reflection behavior and channel environments, and propose a novel adaptive codebook-based limited feedback protocol and learning-based solutions for codebook updates. </p>
<p><br></p>
<p>Furthermore, in order for revolutionary innovations to emerge for future generations of communications, it is crucial to explore and address fundamental, long-standing open problems for communications, such as the design of practical codes for a variety of important channel models. In the later part of this dissertation, we study the design of practical codes for feedback-enabled communication channels, i.e., feedback codes. The existing feedback codes, which have been developed over the past six decades, have been demonstrated to be vulnerable to high forward/feedback noises, due to the non-triviality of the design of feedback codes. We propose a novel recurrent neural network (RNN) autoencoder-based architecture to mitigate the susceptibility to high channel noises by incorporating domain knowledge into the design of the deep learning architecture. Using this architecture, we suggest a new class of non-linear feedback codes that increase robustness to forward/feedback noise in additive White Gaussian noise (AWGN) channels with feedback. </p>
|
4 |
[pt] PROCESSAMENTO DE SINAIS A NÍVEL DE SÍMBOLO PARA TRANSMISSÃO EM SISTEMAS MIMO COM MODULAÇÃO PSK / [en] SYMBOL-LEVEL TRANSMIT PROCESSING FOR MULTIUSER MIMO SYSTEMS WITH PSK MODULATIONERICO DE SOUZA PRADO LOPES 13 March 2025 (has links)
[pt] Este estudo propõe diferentes métodos de processamento de transmissão a
nível de símbolo para diversas configurações MIMO multiusuário. Primeiro,
dois pré-codificadores a nível de símbolo são desenvolvidos considerando
uma estrita restrição de potência por antena e modulação PSK para informações de estado de canal perfeito e imperfeito. Então, uma configuração
MIMO em larga escala é considerada onde o consumo de energia dos front
ends de radiofrequência produz um gargalo para a realização de sistemas
MIMO com eficiência energética. Com isso, recursos de redução de energia,
como sinalização de envelope constante e quantização de baixa resolução,
são aplicados para permitir implantações de baixo custo, com baixo impacto
ambiental e melhor cobertura. Neste contexto, a formulação da mínima probabilidade de erro de símbolo é considerada como o critério de projeto para
o caso de símbolos de dados QPSK e, para modulação PSK arbitrária, o
estudo propõe a nova formulação de mínima probabilidade de erro de símbolo vinculada ao limitante da união. Com base nestes critérios, o estudo
propõe diferentes pré-codificadores de baixa resolução a nível de símbolo,
baseados no método de busca parcial gananciosa e no algoritmo proposto
de branch-and-bound qualidade de serviço. Finalmente, é considerado um
sistema MIMO multiusuário virtual com modulação PSK realizado através
da utilização de um transmissor baseado em superfícies inteligentes reconfiguráveis. Com esta estrutura, este estudo considera modelos de superfície
inteligentes reconfiguráveis de alta resolução e com mudança de fase discreta. Com essas estruturas, o estudo deriva problemas de minimização de
potência a nível de símbolo sob restrições de qualidade de serviço. Tanto
a probabilidade de erro de símbolo quanto a probabilidade de erro de símbolo vinculada ao limitante da união são consideradas para a formulação da
qualidade do serviço. Os problemas são resolvidos utilizando um método de
bissecção e um método branch-and-bound para elementos refletores de alta
e baixa resolução, respectivamente. / [en] This study proposes different symbol-level transmit processing methods for diverse multiuser MIMO setups. First, two symbol-level precoders are developed considering a strict per-antenna power constraint and PSK modulation for perfect and imperfect channel state information. Then, a large-scale MIMO setup is considered where the energy consumption of the radio frequency front ends yields a bottleneck for realizing energy efficient MIMO systems. With this, power reduction features such as constant envelope signaling and low-resolution quantization are applied to enable
low-cost deployments, with low environmental impact, and better coverage.
In this context, the minimum symbol-error probability formulation is con
sidered as the design criterion for the case of QPSK data symbols, and, for
arbitrary PSK modulation, the study proposes the novel minimum union
bound symbol-error probability formulation. Based on these criteria the
study proposes different low-resolution symbol-level precoders based on the
partial greedy search method and the proposed quality-of-service branch and bound algorithm.
Finally, a virtual multiuser MIMO system with PSK modulation realized
via the reconfigurable intelligent surface-based passive transmitter setup is
considered. Under this framework, this study considers both high-resolution
and discrete phase shift reconfigurable intelligent surface models. With these
frameworks, the study derives symbol-level power minimization problems
under quality of service constraints. Both the symbol-error probability
and union-bound symbol-error probability are considered for the quality of
service formulation. The problems are solved by utilizing a bisection method
and a branch-and-bound method for high and low-resolution reflecting
elements, respectively.
|
Page generated in 0.0491 seconds