Spelling suggestions: "subject:"[een] REFINEMENT"" "subject:"[enn] REFINEMENT""
391 |
Exploiting multiple levels of parallelism and online refinement of unstructured meshes in atmospheric model applicationSchepke, Claudio January 2012 (has links)
Previsões meteorológicas para longos períodos de tempo estão se tornando cada vez mais importantes. A preocupação mundial com as consequências da mudança do clima tem estimulado pesquisas para determinar o seu comportamento nas próximas décadas. Ao mesmo tempo, os passos necessários para definir uma melhor modelagem e simulação do clima e/ou tempo estão longe da precisão desejada. Aumentar o refinamento da superfície terrestre e, consequentemente, aumentar o número de pontos discretos (utilizados para a representação da atmosfera) na modelagem climática e precisão das soluções computadas é uma meta que está em conflito com o desempenho das aplicações numéricas. Aplicações que envolvem a interação de longos períodos de tempo e incluem um grande número de operações possuem um tempo de execução inviável para as arquiteturas de computadores tradicionais. Para superar esta situação, um modelo climatológico pode adotar diferentes níveis de refinamento da superfície terrestre, utilizando mais pontos discretos somente em regiões onde uma maior precisão é requerida. Este é o caso de Ocean-Land-AtmosphereModel, que permite o refinamento estático de uma determinada região no início da execução do código. No entanto, um refinamento dinâmico possibilitaria uma melhor compreensão das condições climáticas específicas de qualquer região da superfície terrestre que se tivesse interesse, sem a necessidade de reiniciar a execução da aplicação. Com o surgimento das arquiteturas multi-core e a adoção de GPUs para a computação de propósito geral, existem diferentes níveis de paralelismo. Hoje há paralelismo interno ao processador, entre processadores e entre computadores. Com o objetivo de extrair ao máximo a performance dos computadores atuais, é necessário utilizar todos os níveis de paralelismo disponíveis durante o desenvolvimento de aplicações concorrentes. No entanto, nenhuma interface de programação paralela explora simultaneamente bem os diferentes níveis de paralelismo existentes. Baseado neste contexto, esta tese investiga como explorar diferentes níveis de paralelismo em modelos climatológicos usando interfaces clássicas de programação paralela de forma combinada e como é possível prover refinamento de malhas em tempo de execução para estes modelos. Os resultados obtidos a partir de implementações realizadas mostraram que é possível reduzir o tempo de execução de uma simulação atmosférica utilizando diferentes níveis de paralelismo, através do uso combinado de interfaces de programação paralela. Além disso, foi possível prover maior desempenho na execução de aplicações climatológicas que utilizam refinamento de malhas em tempo de execução. Com isso, uma malha de maior resolução para a representação da atmosfera terrestre pode ser adotada e, consequentemente, as previsões numéricas serão mais precisas. / Weather forecasts for long periods of time has emerged as increasingly important. The global concern with the consequences of climate changes has stimulated researches to determine the climate in coming decades. At the same time the steps needed to better defining the modeling and the simulation of climate/weather is far of the desired accuracy. Upscaling the land surface and consequently to increase the number of points used in climate modeling and the precision of the computed solutions is a goal that conflicts with the performance of numerical applications. Applications that include the interaction of long periods of time and involve a large number of operations become the expectation for results infeasible in traditional computers. To overcome this situation, a climatic model can take different levels of refinement of the Earth’s surface, using more discretized elements only in regions where more precision are required. This is the case of Ocean-Land- Atmosphere Model, which allows the static refinement of a particular region of the Earth in the early execution of the code. However, a dynamic mesh refinement could allow to better understand specific climatic conditions that appear at execution time of any region of the Earth’s surface, without restarting execution. With the introduction of multi-core processors and GPU boards, computers architectures have many parallel layers. Today, there are parallelism inside the processor, among processors and among computers. In order to use the best performance of the computers it is necessary to consider all parallel levels to distribute a concurrent application. However, nothing parallel programming interface abstracts all these different parallel levels. Based in this context, this thesis investigates how to explore different levels of parallelism in climatological models using mixed interfaces of parallel programming and how these models can provide mesh refinement at execution time. The performance results show that is possible to reduce the execution time of atmospheric simulations using different levels of parallelism, through the combined use of parallel programming interfaces. Higher performance for the execution of atmospheric applications that use online mesh refinement was also provided. Therefore, more mesh resolution to describe the Earth’s atmosphere can be adopted, and consequently the numerical forecasts are more accurate.
|
392 |
Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substancesRizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
|
393 |
Aplicação da técnica de mínimos quadrados ao refinamento da estrutura cristalina do formato de zinco bi-hidratado puro e dopado com manganês / Use of least squares method for the refinement of the crystalline structure of Zn formate di-hydrated pure and doped with MnIseli Angelica Martins Bulhoes 06 March 1979 (has links)
Sem resumo / Sem abstract
|
394 |
Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substancesRizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
|
395 |
Exploiting multiple levels of parallelism and online refinement of unstructured meshes in atmospheric model applicationSchepke, Claudio January 2012 (has links)
Previsões meteorológicas para longos períodos de tempo estão se tornando cada vez mais importantes. A preocupação mundial com as consequências da mudança do clima tem estimulado pesquisas para determinar o seu comportamento nas próximas décadas. Ao mesmo tempo, os passos necessários para definir uma melhor modelagem e simulação do clima e/ou tempo estão longe da precisão desejada. Aumentar o refinamento da superfície terrestre e, consequentemente, aumentar o número de pontos discretos (utilizados para a representação da atmosfera) na modelagem climática e precisão das soluções computadas é uma meta que está em conflito com o desempenho das aplicações numéricas. Aplicações que envolvem a interação de longos períodos de tempo e incluem um grande número de operações possuem um tempo de execução inviável para as arquiteturas de computadores tradicionais. Para superar esta situação, um modelo climatológico pode adotar diferentes níveis de refinamento da superfície terrestre, utilizando mais pontos discretos somente em regiões onde uma maior precisão é requerida. Este é o caso de Ocean-Land-AtmosphereModel, que permite o refinamento estático de uma determinada região no início da execução do código. No entanto, um refinamento dinâmico possibilitaria uma melhor compreensão das condições climáticas específicas de qualquer região da superfície terrestre que se tivesse interesse, sem a necessidade de reiniciar a execução da aplicação. Com o surgimento das arquiteturas multi-core e a adoção de GPUs para a computação de propósito geral, existem diferentes níveis de paralelismo. Hoje há paralelismo interno ao processador, entre processadores e entre computadores. Com o objetivo de extrair ao máximo a performance dos computadores atuais, é necessário utilizar todos os níveis de paralelismo disponíveis durante o desenvolvimento de aplicações concorrentes. No entanto, nenhuma interface de programação paralela explora simultaneamente bem os diferentes níveis de paralelismo existentes. Baseado neste contexto, esta tese investiga como explorar diferentes níveis de paralelismo em modelos climatológicos usando interfaces clássicas de programação paralela de forma combinada e como é possível prover refinamento de malhas em tempo de execução para estes modelos. Os resultados obtidos a partir de implementações realizadas mostraram que é possível reduzir o tempo de execução de uma simulação atmosférica utilizando diferentes níveis de paralelismo, através do uso combinado de interfaces de programação paralela. Além disso, foi possível prover maior desempenho na execução de aplicações climatológicas que utilizam refinamento de malhas em tempo de execução. Com isso, uma malha de maior resolução para a representação da atmosfera terrestre pode ser adotada e, consequentemente, as previsões numéricas serão mais precisas. / Weather forecasts for long periods of time has emerged as increasingly important. The global concern with the consequences of climate changes has stimulated researches to determine the climate in coming decades. At the same time the steps needed to better defining the modeling and the simulation of climate/weather is far of the desired accuracy. Upscaling the land surface and consequently to increase the number of points used in climate modeling and the precision of the computed solutions is a goal that conflicts with the performance of numerical applications. Applications that include the interaction of long periods of time and involve a large number of operations become the expectation for results infeasible in traditional computers. To overcome this situation, a climatic model can take different levels of refinement of the Earth’s surface, using more discretized elements only in regions where more precision are required. This is the case of Ocean-Land- Atmosphere Model, which allows the static refinement of a particular region of the Earth in the early execution of the code. However, a dynamic mesh refinement could allow to better understand specific climatic conditions that appear at execution time of any region of the Earth’s surface, without restarting execution. With the introduction of multi-core processors and GPU boards, computers architectures have many parallel layers. Today, there are parallelism inside the processor, among processors and among computers. In order to use the best performance of the computers it is necessary to consider all parallel levels to distribute a concurrent application. However, nothing parallel programming interface abstracts all these different parallel levels. Based in this context, this thesis investigates how to explore different levels of parallelism in climatological models using mixed interfaces of parallel programming and how these models can provide mesh refinement at execution time. The performance results show that is possible to reduce the execution time of atmospheric simulations using different levels of parallelism, through the combined use of parallel programming interfaces. Higher performance for the execution of atmospheric applications that use online mesh refinement was also provided. Therefore, more mesh resolution to describe the Earth’s atmosphere can be adopted, and consequently the numerical forecasts are more accurate.
|
396 |
Os compostos do clínquer Portland: sua caracterização por difração de raios-X e quantificação por refinamento de Rietveld. / Portland clinker phases: their characterization by X-ray diffraction and quantification by Rietveld refinement.Luciano de Andrade Gobbo 14 March 2003 (has links)
O projeto enfocou a aplicação da difração de raios-X (DRX) na caracterização e quantificação dos compostos cristalinos do clínquer de cimento Portland, através do método de Rietveld, constituindo-se em contribuição pioneira sobre o tema em âmbito nacional. Foram utilizadas 40 amostras de clínquer provenientes de cinco diferentes unidades fabris, visando ampla representatividade do material de estudo. O clínquer de cimento Portland é o material sinterizado e peletizado, resultante da calcinação de uma mistura adequada de calcário e argila e, eventualmente, de componentes corretivos. Os compostos metaestáveis do clínquer Portland podem ser subdivididos em três grupos distintos: os silicatos cálcicos (C3S e C2S), a fase intersticial (C4AF, C3A, C12A7), e o grupo dos componentes menos freqüentes como o periclásio, a cal livre e os sulfatos. As proporções destes compostos são parâmetros importantes no controle de processo industrial de clinquerização. O método de Rietveld tem por base a simulação de todo o perfil difratométrico a partir de parâmetros estruturais das fases constituintes, permitindo refinar parâmetros de natureza instrumental e cristalográfica. A comparação do difratograma calculado com o observado e redução das diferenças através do método de mínimos quadrados permitem a obtenção de resultados quantitativos. DRX-Rietveld apresentou-se como uma técnica de quantificação de elevada reprodutibilidade com vantagens de cunho técnico e logístico com relação aos dois métodos correntemente utilizados no Brasil (microscopia e cálculo potencial de Bogue). Técnicas analíticas adicionais permitiram comparar resultados quantitativos obtidos por DRX-Rietveld e também correlacionar características dos compostos com o seu perfil difratométrico. A microscopia óptica foi a técnica de maior importância para comparações tanto qualitativas como quantitativas. A microscopia eletrônica (MEV-EDS) permitiu a aferição de fases não identificadas por microscopia óptica, como o C12A7 e sulfatos. A técnica de dissolução seletiva, aplicada para a concentração da fase intersticial, deu suporte para a aferição quantitativa de teores de polimorfos do C3A. A técnica mostrou resultados coerentes com a microscopia e o cálculo potencial de Bogue, sendo que constituintes não quantificados nestes puderam ser introduzidos (C12A7 e sulfatos), bem como possibilitou a distinção entre polimorfos de um mesmo composto (C3A). A redução no tempo de análise e a diminuição da subjetividade das análises, face às metodologias usuais, constituem fatores importantes da técnica visando atender os interesses da indústria do cimento. / The project has focused on the application of X-ray diffraction (XRD) on the characterization and quantification of the Portland cement clinker crystalline compounds using the Rietveld method. The present research represents a pioneer scientific contribution on the theme in Brazil. Overall forty clinker samples from five distinct kiln lines were collected for analysis aiming to get a broad representativeness of various cement process parameters. Portland cement clinker is the sintered and pelletized product from calcination of an adequate mix of limestone and clay and minor corrective materials. The metastable Portland clinker compounds are subdivided into three main groups: calcium silicates (C3S and C2S), matrix (C4AF, C3A, C12A7) and minor components as periclase, free lime and sulfates. The proportioning of these phases are important parameters to the industry clinkering process. The Rietveld XRD method is based on the simulation of the whole diffraction spectrum from the components structural data, allowing for refining instrumental and crystallographic parameters. By comparing the calculated and actual diffractograms and minimizing differences mathematically through a least squares method quantitative values are obtained. The Rietveld XRD has shown to be a high reproducible quantification technique, with technical and logistics advantages in comparison to the more usual microscopy and Bogue potential calculation. Additional analytical techniques have given reference data to compare quantitative results obtained from Rietveld XRD and to correlate characteristics of the compounds with their diffractogram profile. Optical microscopy was the most relevant technique for comparison both qualitative and quantitatively. Scanning electronic microscopy - energy dispersive system has allowed recognition of phases that could not otherwise be identified by optical microscopy, like C12A7 and sulfates. Selective dissolution of silicates carried out in order to concentrate matrix compounds sustained the quantitative results of C3A polimorphs found by Rietveld XRD. Rietveld has shown coherent results with both microscopy and Bogue potential calculation, but additionnally made it possible quantifying other compounds like C12A7 and sulfates, as well as distinguishing C3A polimorphs. The significant time saving and subjectivity minimization it provides makes up key-factors for the cement industry needs.
|
397 |
Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutronsFournier, Damien 10 October 2011 (has links)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées. / The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4th generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called Sn approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of $hp-$refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into subcells, or by order refinement (p-refinement), by increasing the order of the polynomial basis.In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores.These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the flux behaviour is very different depending on the energy, there is no reason to use the same spatial discretization. Such an approach implies to modify the initial estimators in order to take into account the coupling between groups. This study is done from a theoretical as well as from a numerical point of view.
|
398 |
Realization and comparison of various mesh refinement strategies near edgesApel, T., Milde, F. 30 October 1998 (has links) (PDF)
This paper is concerned with mesh refinement techniques for
treating elliptic boundary value problems in domains with re-
entrant edges and corners, and focuses on numerical experiments.
After a section about the model problem and discretization
strategies, their realization in the experimental code FEMPS3D is
described. For two representative examples the numerically
determined error norms are recorded, and various mesh refinement
strategies are compared.
|
399 |
Analyse isogéométrique multiéchelle à précision contrôlée en mécanique des structures / Multiscale isogeometric analysis with controlled accuracy appiled to structural mechanicsChemin, Alexandre 09 November 2015 (has links)
L’analyse isogéométrique pour la résolution de problèmes de la mécanique du solide suscite de vifs intérêts depuis une dizaine d’année. En effet, cette méthode de discrétisation autorise la description exacte des géométries étudiées permettant ainsi de supprimer les erreurs dues à une mauvaise description du domaine spatial étudié. Cependant elle pose un problème théorique de propagation de raffinement lors de la localisation de maillage. Des méthodes pour contourner ce problème ont été proposée dans la littérature mais complexifient grandement la mise en œuvre de cette stratégie de résolution. Cette thèse propose une stratégie de raffinement localisé adaptatif en espace pour les problèmes de statique et en espace temps pour les problèmes de dynamique transitoire dans le cadre de l’analyse isogéométrique. Pour cela une méthode de localisation pour l’analyse isogéométrique en statique basée sur une résolution multigrille est tout d’abord développée pour des problèmes en deux dimensions. Elle présente l’avantage de contourner la problématique de propagation de raffinement de maillage due à l’analyse isogéométrique tout en étant plus simple à mettre en œuvre que les méthodes déjà existantes. De plus, l’utilisation de l’analyse isogéométrique permet de simplifier les procédures de raffinement lors de l’adaptation de maillage qui peuvent être complexes lors de l’utilisationd’éléments finis classiques. Une méthode de raffinement adaptatif espace temps basée sur une résolution multigrille est ensuite développée pour des problèmes en une dimension. Une étude sur la structure des opérateurs est proposée afin de choisir un intégrateur temporel adapté. Les performances de cette stratégies sont mises en évidence, puis une modification de la méthode de résolution est proposée afin de diminuer significativement les coûts de calculs associées à cette résolution. La méthode de raffinement adaptatif espace temps est appliquée à quelques exemples académiques afin de valider son bon comportement lors de la localisation. / Isogeometric analysis applied to structural mechanics problems is a topic of intense concerns for a decade. Indeed, an exact description of geometries studied is allowed by this discretization method suppressing errors due to a bad description of the spatial domain considered. However, a theoretical problem of refinement propagation appears during mesh localization. Local refinement methods for isogeometric analysis has been developed and implied a complexification of the implementation of such a resolution strategy. This PhD thesis expose a space adaptative refinement strategy for linear elastic problems and a space-time one for transient dynamic using isogeometric analysis. For this purpose, a localization method for isogeometric analysis based on a multigrid resolution is developed for 2D linear elastic problems. This method allow to circumvent mesh refinement propagation inherent to isogeometric analysis, and is easier to implement than existing methods. Moreover, the use of isogeometric analysis simplifies refinement procedures occuring during mesh adaptation and which can be really complex using classical finite element analysis. Then, a space-time adaptative refinement based on a multigrid resolution is developed for one dimensional in space problems. A study on operators structure is exposed in order to choose a well suited time integrator. This strategy's performances are highlighted, then an evolution of this method is set up in order to lower computational costs. The space-time adaptaptive refinement is applied to some academical examples to show it good behavior during localization.
|
400 |
Microstructure and properties of reversion treated low-Ni high-Mn austenitic stainless steelsKisko, A. (Anna) 31 May 2016 (has links)
Abstract
In this thesis, the influence of reversion and recrystallization annealing on microstructure and mechanical properties was studied in metastable austenitic low-Ni high-Mn stainless steels, some alloyed with up to 0.45 wt.% Nb. Further, the effect of the various microstructures created by reversion and recrystallization on strain-induced martensite transformation in tensile testing was investigated. The aim was to achieve excellent combinations of strength and ductility in the steels and to improve understanding of the behaviour of ultrafine-grained austenitic stainless steels during deformation. All the steels were cold-rolled up to 60% thickness reduction producing up to 60% strain-induced α’-martensite in the austenitic structure. Annealing was carried out using a Gleeble thermomechanical simulator between 450–1100 °C for durations of 0.1–1000 s. The resultant microstructures were examined using different research equipment and methods.
Regardless of the amount of Nb alloying, shear- and diffusion-controlled reversion could be completed by annealing at 700 °C, although at this temperature no recrystallization of the untransformed cold-rolled austenite occurred. At 800 °C, however, the cold-rolled austenite recrystallized, producing a non-uniform grain structure comprising ultrafine-grained areas formed via reversion and coarser ones formed by recrystallization of the retained austenite. At 900 °C, a uniform fine austenite grain size of about 2 μm was obtained. At higher annealing temperatures of 1000–1100 °C, normal grain growth of fine grains took place during prolonged annealing in steel with no Nb. However, grain growth was effectively retarded by alloying with 0.28 wt.% Nb.
The non-uniform structures consisting of reverted and retained austenite exhibited excellent combinations of yield strength and uniform elongation. The results also showed that tensile strain-induced martensite nucleation sites and α’-martensite formation vary in a complex way depending on grain size. / Tiivistelmä
Väitöstyössä tutkittiin reversiohehkutuksen vaikutusta metastabiilin 1% nikkeliä ja 9% mangaania sisältävien austeniittisten ruostumattomien terästen mikrorakenteeseen ja mekaanisiin ominaisuuksiin sekä austeniitin raekoon ja mikrorakenteen vaikutusta muokkausmartensiitin syntyyn vetokokeessa. Koeteräksistä osa oli lisäksi niobiseostettuja. Tavoitteena oli nostaa teräksien lujuutta ja ymmärtää ultrahienorakeisen austeniittisten ruostumattomien terästen käyttäytymistä muokkauksessa. Teräkset kylmämuokattiin 60% valssausreduktiolla, jolloin austeniittiseen rakenteeseen muodostui muokkausmartensiittia enimmillään 60%. Reversiohehkutukset tehtiin Gleeble termomekaanisella simulaattorilla lämpötiloissa 450–1100 °C ja 0.1–1000 s pitoajoilla. Saatuja mikrorakenteita tutkittiin eri tutkimuslaitteistoilla ja -menetelmillä.
700 °C hehkutuksessa leikkautumalla ja diffuusion välityksellä tapahtuva reversio oli nopea myös niobi-seostetuilla teräksillä, mutta rekristallisaatiota ei tapahtunut. 800 °C hehkutuksessa muokkauksessa teräksiin jäänyt austeniitti rekristallisoitui, mutta raerakenne muodostui epätasaiseksi koostuen reversion tuottamasta ultrahienoista rakeista ja jäännösausteniitin rekristallisaation tuottamista karkeammista rakeista. Sitä vastoin hehkutus 900 °C:ssa tuotti tasainen 2 μm austeniitin raekoon. Pitkissä hehkutuksissa korkeammissa lämpötiloissa 1000–1100 °C niobi-seostamattomissa teräksissä tapahtui hienojen rakeiden normaalia rakeenkasvua. Kuitenkin 0.28p-% niobi-seostuksen havaittiin oleva riittävä estämään rakeenkasvu.
Reversion ja osittaisen rekristallisaation tuottamilla raerakenteilla saatiin erinomaiset myötölujuus-tasavenymäyhdistelmät. Vetokokeissa martensiitin ydintymispaikat ja -nopeus vaihtelivat monimutkaisella tavalla raekoosta riippuen.
|
Page generated in 0.0377 seconds