• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 699
  • 368
  • 265
  • 70
  • 62
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 18
  • 10
  • 10
  • 8
  • Tagged with
  • 1807
  • 377
  • 341
  • 166
  • 156
  • 148
  • 143
  • 111
  • 106
  • 100
  • 98
  • 86
  • 83
  • 82
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Rheology of waxy crude oils in relation to restart of gelled pipelines

Fakroun, A., Benkreira, Hadj 18 September 2019 (has links)
Yes / Waxy crude oils are pumped hot but upon power cut, pumping stops, the oil cools leading below the wax appearance temperature to precipitation of the wax and the formation of a gel throughout the pipe. In such a situation, what is the minimum pressure required to restart flow, not to merely deform the gel or break it? This paper provides a solution to this problem using microscopic observations under controlled cooling conditions and rheological data conducted in constant stress mode under controlled temperature and cooling conditions and restart experiments in laboratory pipelines replicating the rheometric conditions and deviations from them to inform large diameter operation in the field. Three important findings derive from the experimental data collected: (i) A fragmentation stress , rather than the static stress that precedes it, is found to be the more accurate predictor of flow re-start pressures; (ii) Waxy crude oils gels exhibit true yield stress and yielding process but also show flow on application of the slightest stress below yielding; (iii) This flow, in the elastic region, is jagged rather than continuous suggesting a consolidation process of the crystals and their agglomerates forming the gel. In the broader context of the existence of a yield stress, the data presented here show that there is such a thing as a yield stress and the concepts of a yield stress and that everything flows are not mutually exclusive.
592

Additive Manufacturing of Commercial Polypropylene Grades of Similar Molecular Weight and Molecular Weight Distribution

Nour, Mohamed Imad Eldin 12 June 2024 (has links)
Filament-based material extrusion additive manufacturing (MEAM) is an established technique in additive manufacturing (AM). However, semicrystalline polymers, such as polypropylene (PP), have limited commercial use in MEAM processes in the past due to their rapid crystallization kinetics and the subsequent effect on the integrity of the generated structures. The rapid crystallization of PP can be controlled by formulating blends of PP with hydrocarbon resins to enable longer re-entanglement times for interlayer adhesion. While the topic of formulating PP blends/composites with other materials to improve the printability has been investigated, variation in properties of commercial PP grades, of similar molecular weight (MW) and molecular weight distribution (MWD), on printability is still to be investigated. Those commercial PP grades can have wide variation in properties such as Melt Flow Index (MFI), additive content, and polymer architecture which can impact material properties relevant to printability. To investigate the effect of properties of commercial PP on their printability and mechanical performance, different commercial PP grades, with different properties, are blended with a fixed loading of hydrogenated resins, and the consequent effects on the mechanical properties of MEAM generated PP structures are studied via mechanical analysis. Tensile strength and the extent of interlayer adhesion in the 3D printed blends are characterized through rheological measurements. These measurements emphasize the importance of the relative location of the storage/loss modulus crossover point via small oscillatory frequency sweeps. We specifically show that a relatively higher crossover frequency will correlate with improved interlayer adhesion and reduced warpage in printed structures. However, this improvement is accompanied by a tradeoff, resulting in inferior tensile strength and an increased degree of print orientation anisotropy. / Master of Science / Additive Manufacturing (AM), commonly known as 3D printing, is a transformative technology with high potential to revolutionize the manufacturing landscape. Polymers are widely used in AM for various applications. As a result, extensive research is conducted to enhance the printability and properties of printed polymer structures. Polypropylene (PP) exhibits desirable mechanical, optical, and chemical properties that make its use in AM attractive. Despite this potential, optimizing the use of PP in 3D printing remains challenging. Consequently, extensive research is underway to improve the printability of PP. However, the effects of including additives to enhance the properties of commercial PP grades are often overlooked. We demonstrate that the choice of commercial PP grade is crucial to the mechanical and structural properties of structures generated via AM. This was established by developing a systematic experimental procedure to assess the printability of various PP grades and to measure their key mechanical and structural properties.
593

Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite polyethylene composite.

Joseph, R., McGregor, W.J., Martyn, Michael T., Turner, K.E., Coates, Philip D. 10 August 2009 (has links)
No / The commercial success of hydroxyapatite (HA) filled polyethylene composite has generated growing interest in improving the processability of the composite. A number of synthetic procedures and post synthesis heat treatment of HA has lead to the availability of powders with widely varying morphological features. This paper addresses the effect of morphological features of HA on the rheology and processability of an injection-moulding grade HA-HDPE composite. The results showed that low surface area HA filled composite exhibited better injection processing characteristics through improved rheological responses. The effect of reducing the surface area of the filler is to require less polyethylene to wet the filler and allows more polyethylene to be involved in the flow processes. These changes reduced the temperatures and pressures required for successful processing.
594

3D-Printing Hydrogel Robots / 3D-printning av hydrogel robotar

Bancerz Aleksiejczuk, Oliwia Nikola, Westerlund, Sara, Gustavsson, Emilia, Lomundal, Hanna January 2024 (has links)
There is a constant search for new sustainable materials. A material that has become increasingly more interesting is cellulose, since it is both renewable and biodegradable. By combining cellulose nanofibrils (CNF) and the polymer complex poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a conductive hydrogel can be made. The hydrogel can subsequently be used to 3D-print various structures, which further can be used in multiple applications such as microrobots, sensors and smart devices. The aim of this bachelor thesis was to develop a 3D-printable hydrogel composed of PEDOT:PSS and CNF was made. The goal was to print and crosslink a conductive structure, and subsequently induce electrical current through the structure to facilitate movement (i.e. artificial muscles). Several hydrogel inks composed of CNF and PEDOT:PSS were prepared across a range of concentrations. Homogenisation of the hydrogels was achieved through various mixing techniques. Both freeze-drying and evaporation were tested to concentrate the hydrogels. Furthermore, crosslinking tests were performed using iron(III)chloride hexahydrate and citric acid, followed by a conductivity measurement. Lastly, rheology tests were performed on four of the inks. The optimal concentration of solid material was determined to be 4.8 wt% and the most favourable way of concentrating the hydrogels was by freeze drying. Furthermore, iron(III)chloride hexahydrate was found to be more favourable when crosslinking the hydrogels. The conductivity measurements showed that crosslinking with iron(III)chloride hexahydrate resulted in a notable increase in conductivity in the material. Lastly, the rheology measurements showed that the 4.8 wt% hydrogel ink had high elasticity, viscosity and exhibited shear thinning behaviour. / Det söks konstant efter nya hållbara material. Ett material som har blivit alltmer intressant är cellulosa, eftersom det både är förnybart och bionedbrytbart. Genom att kombinera cellulosa nanofibriller (CNF) och polymer komplexet poly(3,4-etylendioxitiofen) polystyrensulfonat (PEDOT:PSS), kan en konduktiv hydrogel framställas. Denna hydrogel kan sedan användas för att 3D-printa en mängd olika strukturer, vilka senare kan används i olika tillämpningar så som mikrorobotar, sensorer och smarta enheter. Målet med detta kandidatarbete var att utveckla en hydrogel av PEDOT:PSS och CNF för användning i 3D-skrivare. Målet var att printa och korslänka en struktur med konduktiva egenskaper, vilken senare skulle induceras med elektricitet för att främja rörelse, med andra ord artificiella muskler. Ett flertal hydrogeler av CNF och PEDOT:PSS förbereddes i en rad olika koncentrationer. Homogenisering av hydrogelerna uppnåddes genom att testa olika metoder för omrörning. Både frystorkning och avdunstning testades för att koncentrera hydrogelerna. Dessutom undersöktes tvärbindning genom järn(III)kloridhexahydrat och citronsyra, följt av en konduktivitetsmätning. Slutligen utfördes reologimätningar på fyra av de framställda hydrogelerna. Den optimala koncentrationen av fast material i en hydrogel bestämdes till 4,8 vikt% och det mest gynnsamma sättet att koncentrera hydrogeler var genom frystorkning. Vidare, var järn(III)kloridhexahydrat ett mer fördelaktigt alternativ vad gällde tvärbindning av hydrogelerna. Konduktivitetsmätningarna visade att tvärbindning med hjälp av järn(III)kloridhexahydrat ökade konduktiviteten märkbart hos materialet. Slutligen visade reologimätningarna att hydrogelen med 4,8 vikt% hade hög elasticitet, viskositet och den uppvisade även skjuvningstunnande beteende.
595

Formulation of the particle size distribution effects on the rheology and hydraulics of highly-concentrated suspensions

Dabak, Turgay January 1986 (has links)
A formulation was developed for the rheological characterization of highly concentrated suspensions, accounting for the physical effects of particle size distribution. A number of dimensionless parameters were developed signifying the physical characteristics of the solids and the vehicle fluid, and functionally related to the yield-stress and a flow parameter. Each of these expressions of the formulation contains an empirical dimensionless coefficient accounting for the interparticle and fluid/solid interactions that are not explained by the physical parameters involved. A formulation and a methodology were also developed for predicting the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of three parameters signifying effects of particle size distribution. A number of applications were made using various non-coal and limited coal-liquid mixture data reported in the literature to demonstrate the general validity of the formulations. A methodology was proposed for the analysis of the particle size distribution effects on the overall optimum energy efficiency during hydraulic transportation and particle size reduction. The computer model developed for this purpose was employed to evaluate the transportation energy consumption and the energy consumed in the grinding process to prepare the slurry, in pipes of various sizes and lengths for a coal slurry of various specified particle size distributions and concentrations. Correlations obtained indicated the sensitivity of transportation energy efficiency to various parameters including the maximum packing concentration, relative concentration, specific surface area of particles, surface area mean size, pipe size and length, and annual mixture throughput. The results of combined energy calculations have shown that the particle size distribution and related physical parameters can significantly affect the energy efficiency due to both grinding and transportation, and the delivered cost of slurry fuels. / Ph. D.
596

Rheological characterizaton, and the development of molecular orientation and texture during flow for a liquid crystalline copolymer of para- hydroxybenzoic acid and polyethylene terephthalate

Viola, Georg Giuseppe January 1985 (has links)
It is generally agreed that the high physical properties arising in as-processed liquid crystalline materials are due to the high degree of molecular orientation which develops during the processing step. In order to more fully understand and predict such behavior, a constitutive equation describing the flow behavior of these materials would be useful. It has been suggested that in order to describe the rheology of liquid crystalline fluids such a constitutive equation would need to include molecular orientation effects. The purpose of part of this study has been to examine the usefulness of several constitutive equations for describing the steady and transient behavior of several liquid crystalline polymers. These include a copolyester of para-hydroxybenzoic acid and polyethylene terephthalate, and an anisotropic solution of 12 weight% Kevlar in 100% sulfuric acid. It was found that in the case of the copolyester system, the steady shear and dynamic viscosities were equal over certain temperature ranges. For this reason, the constitutive equation of Zaremba, Fromm, and DeWhitt (ZFD model) was used to predict the steady state behavior of the system studied. From knowledge of either the steady shear or dynamic viscosity it was possible to predict both the steady state normal stresses (N1) and the storage modulus (G'). The model could not, however, predict the transient behavior of the systems studied. Ericksen’s anisotropic fluid theory has been investigated in detail as it takes molecular orientation effects into account. Ericksen’s theory can partially explain the transient behavior of the systems studied in terms of molecular orientation which develops during shear flow. However, wide angle x-ray scattering (WAXS) and scanning electron microscope (SEM) studies reveal that shear flow has little effect on the development of molecular orientation during flow. In addition, any orientation produced during flow may be lost within thirty seconds at the melt temperature. It appears that a disruption of texture is occurring during flow which may need to be incorporated into the theory of Ericksen. / Ph. D. / incomplete_metadata
597

PROCESSING OF NANOCOMPOSITES AND THEIR THERMAL AND RHEOLOGICAL CHARACTERIZATION

Jacob M Faulkner (7023458) 13 August 2019 (has links)
<p>Polymer nanocomposites are a constantly evolving material category due to the ability to engineer the mechanical, thermal, and optical properties to enhance the efficiency of a variety of systems. While a vast amount of research has focused on the physical phenomena of nanoparticles and their contribution to the improvement of such properties, the ability to implement these materials into existing commercial or newly emerging processing methods has been studied much less extensively. The primary characteristic that determines which processing technique is the most viable is the rheology or viscosity of the material. In this work, we investigate the processing methods and properties of nanocomposites for thermal interface and radiative cooling applications. The first polymer nanocomposite examined here is a two-component PDMS with graphene filler for 3D printing via a direct ink writing approach. The composite acts as a thermal interface material which can enhance cooling between a microprocessor and a heat sink by increasing the thermal conductivity of the gap. Direct ink writing requires a shear thinning ink with specific viscoelastic properties that allow for the material to yield through a nozzle as well as retain its shape without a mold following deposition. No predictive models of viscosity for nanocomposites exist; therefore, several prominent models from literature are fit with experimental data to describe the change in viscosity with the addition of filler for several different PDMS ratios. The result is an understanding of the relationship between the PDMS component ratio and graphene filler concentration with respect to viscosity, with the goal of remaining within the acceptable limits for printing via direct ink writing. The second nanocomposite system whose processability is determined is paint consisting of acrylic filled with reflective nanoparticles for radiative cooling paint applications. The paint is tested with both inkjet and screen-printing procedures with the goal of producing a thermally invisible ink. Radiative cooling paint is successfully printed for the first time with solvent modification. This work evaluates the processability of polymer nanocomposites through rheological tailoring. </p><br>
598

Viscosity-control and prediction of microemulsions / Contrôle et estimation de la viscosité de micro-émulsions

Pleines, Maximilian 06 November 2018 (has links)
La viscosité est une propriété fondamentale des fluides complexes et qui reste encore difficile à prédire quantitativement. Cette propriété macroscopique provient de propriétés moléculaires et mésoscopiques. La compréhension et l’estimation de l'évolution de la viscosité avec des paramètres variables est important pour plusieurs applications, entre autres pour l’extraction liquide-liquide et pour la formulation de systèmes tensioactifs aqueux.Dans ce travail, un modèle "minimal" prenant en compte les énergies libres mises en jeu a été développé pour aider à comprendre, contrôler et prédire l'évolution de la viscosité des microémulsions en présence de solutés. Le terme «minimal» signifie dans ce contexte que ce modèle est basé sur un ensemble minimal de paramètres qui sont tous mesurables ou ont une signification physique, ce qui permet d’éviter le recours à des paramètres ajustables. Ce modèle développé dans cette thèse considère les termes chimiques à l'échelle moléculaire, les termes physiques à l'échelle mésoscopique ainsi que les caractéristiques d'écoulement à l'échelle macroscopique a été appliqué sur des microémulsions pauvres en eau utilisé pour l’extraction des métaux ainsi que sur des systèmes tensioactifs anioniques aqueux. / Viscosity is a fundamental property of complex fluids that is still nowadays extremely difficult to predict quantitatively. This macroscopic property originates from molecular and mesoscopic properties. The understanding and prediction of the evolution of the viscosity with changing parameters is crucial for several applications, amongst others for liquid-liquid extraction processes and for formulation of aqueous surfactant systems.In this work, a “minimal” model taking into account the relevant free energies was developed that helps to understand, control and predict the evolution of the viscosity of microemulsions in presence of solutes. The term “minimal” means in that context that this model is based on a minimal set of parameters that are all measurable and have a physical meaning, thus avoiding input of any adjustable parameter. This model that considers the chemical terms at molecular scale, the physical terms at meso-scale as well as the flow characteristics at macroscale was applied on water-poor extracting microemulsions as well as on aqueous anionic surfactant systems.
599

In-situ Monitoring of Photopolymerization Using Microrheology

Slopek, Ryan Patrick 18 July 2005 (has links)
Photopolymerization is the basis of several multi-million dollar industries including films and coating, inks, adhesives, fiber optics, and biomaterials. The fundamentals of the photopolymerization process, however, are not well understood. As a result, spatial variations of photopolymerization impose significant limitations on applications in which a high spatial resolution is required. To address these issues, microrheology was implemented to study the spatial and temporal effects of free-radical photopolymerization. In this work a photosensitive, acrylate resin was exposed to ultraviolet light, while the Brownian motion of micron sized, inert fluorescent tracer particles was tracked using optical videomicroscopy. Statistical analysis of particle motion yielded data that could then be used to extract rheological information about the embedding medium as a function of time and space, thereby relating UV exposure to the polymerization and gelation of monomeric resins. The effects of varying depth, initiator concentration, inhibitor concentration, composition of the monomer, and light intensity on the gelation process were studied. The most striking result is the measured difference in gelation time observed as a function of UV penetration depth. The observed trend was found to be independent of UV light intensity and monomer composition. The intensity results were used to test the accuracy of energy threshold model, which is used to empirically predict photo-induced polymerization. The results of this research affirm the ability of microrheology to provide the high spatial and temporal resolution necessary to accurately monitor the photopolymerization process. The experimental data provide a better understanding of the photo-induced polymerization, which could lead to expanded use and improved industrial process optimization. The use of microrheology to monitor photopolymerization can also aid in the development of predictive models and offer the ability to perform in-situ quality control of the process.
600

The rheology and phase separation kinetics of mixed-matrix membrane dopes

Olanrewaju, Kayode Olaseni 18 January 2011 (has links)
Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix do separation between gas mixtures based on the molecular size difference and/or adsorption properties of the component gases vis-à-vis the porous structure and the nature of adsorption sites in the molecular sieve. The development of MMMs to deliver on its promises has however been slow. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. For an efficient large scale processing of hollow fibers the rheology and kinetics of phase separation of the MMM dopes are important control variables in the process design. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, α, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device that enables measurements of the phase separation kinetics via video-microscopy are presented. Our device provides a well-defined sample geometry and controlled atmosphere for in situ tracking of the phase separation process. We have used this technique to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK is increased by increased particles surface area as a result of surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic quality of the dope based on the hydrophilic and porous nature of suspended particles.

Page generated in 0.3888 seconds