Spelling suggestions: "subject:"[een] ROTOR"" "subject:"[enn] ROTOR""
151 |
Tail Rotor Drive System for Unmanned Helicopter : From Concept Generation to Detalied DesignStokov, Matko January 2020 (has links)
This thesis concerns the upgrade of APID One RPAS by The MainBase AB. Due to their wish to explore different options for tail drive of current RPAS and future heavier variant, several concepts have been generated and analyzed. Systemic elimination of proposed concepts has resulted with a belt drive transmission. Basic calculation has been performed to determine estimates of power requirements and positions of the new tail rotors relative to the fuselage. Furthermore, the design process encompassed components from the existing output power shaft within the fuselage to the final blades shaft, including the belt transmission, the truss-type structural support, and additional devices. The work includes material selection, FEA analyses of the structure, and bolts and welds calculations where loads were known. Final result is a tail boom that interchangeably fits both, new light and new heavy variant.
|
152 |
Návrh axiálního čerpadla pro zadané parametry / The design of axial pump for given parametersStareček, Jakub January 2015 (has links)
This master's thesis contains basic hydraulic calculations, design and optimalization of both the rotor and stator part of the axial pump. There is also included an analysis of the principle and function of hydrodynamic axial pumps. The last part of this work is focusing on the strength calculations and flow simulations using CFD.
|
153 |
On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical SystemsStefancich, Marco 08 1900 (has links)
The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
|
154 |
Hot jet ignition delay characterization of methane and hydrogen at elevated temperaturesKojok, Ali Tarraf 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50\% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.
|
155 |
STABILITY AND BIFURCATION DYNAMICS OF JOURNAL BEARING ROTOR SYSTEMSXu, Yeyin 01 September 2020 (has links) (PDF)
In this dissertation, the mechanical models of 2-DOF and 4-DOF nonlinear journal bearing rotor systems are established. A more accurate model of oil film forces is derived from Reynolds equations. The periodic motions in such nonlinear journal bearing systems are obtained through discrete mapping method. Such a semi-analytical method constructs an implicit discrete mapping structure for periodic motions by discretization of the continuous journal bearing rotor differential equations. Stable and unstable periodic solutions of periodic motions are obtained with prescribed accuracy. The bifurcation tree of periodic motions in rotor system without oil film forces is demonstrated through the route from period-1 motion to period-8 motion. Stable period-2 and unstable period-1 motion are presented for 2 DOF journal bearing rotor system. Possibly infinite periodic solutions are found in 4 DOF journal bearing rotor system. For the rotor systems, the stability and bifurcations of periodic motions are analyzed through eigenvalue analysis of the corresponding Jacobian matrix of the discretized nonlinear systems. The frequency amplitude characteristics of periodic motions in 2 DOF journal bearing system are presented for a good understanding of the nonlinear dynamics of journal bearing rotor system in frequency domain . The rich dynamics of the journal bearing systems are discovered. The numerical illustrations of stable periodic motions are brought out with the initial conditions from analytical prediction.
|
156 |
Flexural Vibrations of a Rotating Shaft Having Nonlinear ConstraintsBonde, Umesh U. 06 1900 (has links)
<p> Flexural vibrations of a shaft mounted at each end on a non - linear spring have been studied. Theoretical analysis is carried out for the cubic non-linear spring. </p> <p> The effect of mountirig of a heavy rotor on the shaft has been considered. The stability analysis of the system is also given in the theoretical analysis.</p> / Thesis / Master of Engineering (ME)
|
157 |
[pt] ANÁLISE DO PROCESSO DE CONTATO ENTRE ROTOR E ESTATOR EM UMA MÁQUINA ROTATIVA / [en] ROTOR STATOR CONTACT IN A ROTATING MACHINEAHMED MOHAMMED SEGAYER 19 June 2018 (has links)
[pt] O crescente avanço da tecnologia de equipamentos rotativos tem exigido dos projetistas de máquinas adapta-los às condições de operação mais rigorosas e, consequentemente, projetos mais sofisticados. O aumento da eficiência é frequentemente realizado por operações de minimização de folga entre os elementos rotativos e estacionários e/ou aumento da velocidade de rotação do rotor. A natureza das funções e o custo elevado dos equipamentos rotativos de alta velocidade exigem precisão e segurança no projeto para evitar riscos de operação. Quando o rotor entra em contato com o estator, este pode exibir um
comportamento dinâmico fascinante cujo movimento depende de impacto, atrito, e efeitos giroscópicos. Grande parte das preocupações dos engenheiros com relação a vibrações em máquinas rotativas leves e de alta velocidade deve-se aos seus efeitos destrutivos sobre o sistema do estator. Interação devido ao efeito do rubbing entre o conjunto do rotor e sua respectiva carcaça um dos principais causadores de falhas em máquinas rotativas. As forças e tensões desenvolvidas como resultado de pequenas folgas podem resultar em desgaste, perda de desempenho, redução de estabilidade, ruído, calor e vibrações. Obter maior conhecimento sobre este fenômeno torna-se extremamente importante para melhorar a capacidade de
proteger o sistema de possíveis danos. O fator chave para almejar este objetivo é continuamente aumentar a habilidade de prever a resposta dinâmica com precisão para então garantir a estabilidade do sistema do rotor. Neste âmbito, o presente trabalho apresenta um estudo teórico, com simulação numérica e validação experimental como objetivo de melhorar nosso conhecimentos sobre o fenômeno. / [en] Increasing demands for high performance, yet reliable operation of rotating machinery continues to increase and have placed stringent requirements on designers and developers to produce efficient, trouble-free rotating machinery. The performance of high-performance turbomachinery can be enhanced by decreasing clearance between rotating parts and housing and/or by increasing the rotor velocity. When a rotor touches upon a boundary, it can exhibit a quite fascinating dynamical behavior and its motion depends on impact, friction, and gyroscopic effects. A large portion of the engineering concern with vibration in high speed rotating machinery results from its destructive effects on the stator system. Rub
interactions between a rotor assembly and its corresponding casing structure has been one of the major causes for machine failure. The forces and tensions developed as a result of such clearances can result in wear, loss of performance, reduction of the stability, noise, heat and vibration. Gaining increased knowledge about rnb-related phenomena is important for improving the ability to protect a machine from damage. A key factor in achieving this objective continues to be the ability to accurately predict the dynamic response and stability of a rotor system. This work presents theoretical study, with numerical simulation and
experimental validation to improve our knowledge about this phenomena.
|
158 |
Data Acquisition, Analysis, and Modeling of Rotordynamic SystemsMullen, Michael P 01 June 2020 (has links) (PDF)
Data acquisition systems for rotordynamic analysis and machine vibration were explored for the purpose of replacing the obsolete Bently Nevada ADRE 208 and ADRE for Windows system. These included the development of Matlab based custom data acquisition systems and a user interface. A model of an anisotropic rotor response undergoing transient speed was developed for the rapid prototyping and testing of data acquisition systems. Several methods for the measurement of amplitudes and phase in both the time domain and frequency domain were developed and compared. An alternate data acquisition method which is more inline with industry practices was created for the purpose of spectral analysis. Additionally, an optimized data acquisition strategy was developed for implementation within the Matlab app which included batch processing, state-based acquisition, and differentiated vector and waveform acquisition rates. A Bently Nevada 2300/20 vibration monitor was configured for use in the lab but found unsuitable for replacing the ADRE 208. Ultimately a Bently Nevada ADAPT 3701/44 Vibration Monitor was configured and found to be an adequate replacement for the ADRE 208 system for use in the Cal Poly Vibrations Lab.
|
159 |
Effects of Chainring Design on Performance in Competitive CyclistsO'Hara, Christiane Rose 01 August 2011 (has links) (PDF)
The development of noncircular chainrings to improve cycling performance has been in progress since the 1980’s and continues apace. The aim of this study was to compare performance time and physiological responses in cycling using a standard circular chainring versus a noncircular chainring developed in 2005: the Rotor Q-Ring. Eight competitive male cyclists were pre-tested using the original circular chainrings and also on the initial week of testing. The intervention consisted of cycling with Rotor Q-Rings for four weeks. Post-testing occurred with the original chainrings for the final week of testing. Testing consisted of a maximal or submaximal graded exercise test followed by a 1 k time trial. Oxygen consumption, carbon dioxide output, heart rate, ventilation, respiratory exchange ratio, and perceived exertion were continuously measured during the tests. Blood lactate concentration was measured during the last 30 s of each three minute stage. Five minutes after the submaximal test, participants performed an “all out” 1 k trial for time as well as maximum and average power. The main findings were: 1) Participants were on average 1.6 seconds faster in the 1 k time trial with Rotor Q-Rings compared to a circular chainrings. 2) There was a significant increase in average power (26.7 watts) and average speed (0.7 kph) during the 1 k time trial with Rotor Q-Rings. 3) Oxygen consumption (during weeks 2-4) and heart rate (weeks 1-3) were significantly lower with Rotor Q-Rings during submaximal testing when compared to circular chainrings. However, in contrast to our hypotheses no benefits were observed for other submaximal dependent measures (i.e., CO2, VE, RER, RPE, GE, DE, and lactate).
|
160 |
Laboratory-Scale Analysis of Energy-Efficient Froth Flotation Rotor DesignNoble, Christopher Aaron 29 October 2012 (has links)
Froth Flotation is an industrial separation process commonly used in the primary enrichment of run-of-mine mineral material. Over the past 100 years, much of the process's development has come from empirical evolution, rather than fundamental understanding. While many of the governing sub-processes are still poorly understood, the primary influential factors lie within the chemical, equipment, and operational variables unique to each flotation system. This investigation focuses on the phenomenological investigation of the equipment variables, particularly the rotor design, at the laboratory scale.
During this study, several small-scale flotation systems were developed, including various rotor and stator designs, tank sizes, and flow conditions. Experimental techniques were also developed to identify operational performance in four criteria: power consumption, gas dispersion, operational robustness, and flotation kinetics. Evaluation of the various rotors was conducted in two campaigns: (1) an exploratory campaign which featured 14 rotors in limited operational conditions (2) a detailed campaign which featured three rotors in an exhaustive set of conditions.
The results show that different rotors exhibited varying degrees of performance when judged by the aforementioned performance criteria. In general, excessive fluid pumping leads to an increase range of stable operation at the expense of greater power consumption. However, this increased power consumption does not necessarily correspond to increased flotation performance, as the data generally confirms the linearly proportional relationship of flotation rate and bubble surface area flux. Consequently, enhanced flotation kinetics can be achieved by rotors which disperse high rates of gas while retaining a small bubble size. / Master of Science
|
Page generated in 0.0419 seconds