• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 68
  • 27
  • 11
  • 10
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 101
  • 76
  • 47
  • 41
  • 30
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Generalized Lagrangian mean curvature flow in almost Calabi-Yau manifolds

Behrndt, Tapio January 2011 (has links)
In this work we study two problems about parabolic partial differential equations on Riemannian manifolds with conical singularities. The first problem we are concerned with is the existence and regularity of solutions to the Cauchy problem for the inhomogeneous heat equation on compact Riemannian manifolds with conical singularities. By introducing so called weighted Hölder and Sobolev spaces with discrete asymptotics, we provide a complete existence and regularity theory for the inhomogeneous heat equation on compact Riemannian manifolds with conical singularities. The second problem we study is the short time existence problem for the generalized Lagrangian mean curvature flow in almost Calabi-Yau manifolds, when the initial Lagrangian submanifold has isolated conical singularities that are modelled on stable special Lagrangian cones. First we use Lagrangian neighbourhood theorems for Lagrangian submanifolds with conical singularities to integrate the generalized Lagrangian mean curvature flow to a nonlinear parabolic equation of functions, and then, using the existence and regularity theory for the heat equation, we prove short time existence of the generalized Lagrangian mean curvature flow with isolated conical singularities by letting the conical singularities move around in the ambient space and the model cones to rotate by unitary transformations.
112

Deformações geométricas de curvas no plano Minkowski / Geometric deformations of curves in the Minkowski plane

Francisco, Alex Paulo 16 April 2019 (has links)
Neste trabalho, estendemos o método desenvolvido em (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) para curvas no plano Minkowski. Tal método propõe um modo de estudar deformações de curvas planas levando em consideração a geometria das mesmas juntamente com suas singularidades. Abordamos detalhadamente todos os fenômenos locais que ocorrem genericamente em famílias de curvas a 2-parâmetros. Em cada caso, obtemos a geometria da curva deformada, ou seja, informações a respeito de inflexões, vértices e pontos lightlike. Obtemos também o comportamento da evoluta/cáustica de uma curva em pontos especiais e as bifurcações que podem aparecer ao deformá-la. Além disso, a fim de obter as deformações genéricas em uma inflexão lightlike de ordem 2, também classificamos submersões de R3 em R por meio de difeomorfismos na fonte que preservam a swallowtail e, utilizando tal classificação, estudamos a geometria plana da swallowtail, a qual provém de seu contato com planos, o qual por sua vez é medido pelas singularidades da função altura sobre a swallowtail. / In this work, we extend the method developed in (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) to curves in the Minkowski plane. The method proposes a way to study deformations of plane curves taking into consideration their geometry as well as their singularities. We deal in detail with all local phenomena that occur generically in 2-parameters families of curves. In each case, we obtain the geometry of the deformed curve, that is, information about inflections, vertices and lightlike points. We also obtain the behavior of the evolute/caustic of a curve at special points and the bifurcations that can occur when the curve is deformed. Moreover, in order to obtain the generic deformations at a lightlike inflection point of order 2, we also classify submersions from R3 to R by diffeomorphisms in the source that preserve the swallowtail and, using such classification, we study the flat geometry of the swallowtail, which comes from its contact with planes, which in turn is measured by the singularities of the height function on the swallowtail.
113

Uniformização local: redução ao caso de valorizações de posto um / Local uniformization: reduction to the case of valuations of rank one

Moraes, Michael Willyans Borges de 16 August 2017 (has links)
Este trabalho trata da uniformização local, que é um passo do método de Zariski para provar resolução de singularidades em variedades algébricas. O método consiste numa abordagem por teoria de valorizações, e esta dissertação se baseia no artigo [NS], de Novacoski e Spivakovsky, que consiste em reduzir a prova da uniformização local para valorizações de qualquer posto, a provar apenas para os casos de posto um. / This work deals with local uniformization, which is a step in the method of Zariski to prove resolution of singularities for algebraic varieties. The method consists in an approach using valuation theory and this dissertation is based on the paper [NS], by Novacoski and Spivakovsky, which consists in reduce the proof of local uniformization for all cases to prove only the cases of rank one.
114

Invariantes do tipo Vassiliev de aplicações estáveis de 3-variedade em \'R POT. 4\' / Vassiliev type invariants of stable mappings of 3-manifold in \'R POT. 4\'

Casonatto, Catiana 28 July 2011 (has links)
Neste trabalho obtemos que o espaço dos invariantes locais do tipo Vassiliev de primeira ordem de aplicações estáveis de 3-variedade fechada orientada em \' R POT. 4\' é 4-dimensional. Damos uma interpretação geométrica para 2 dos 4 geradores deste espaço, a saber, \'I IND. Q\' o número de pontos quádruplos e \'I IND. C / P\' o número de pares de pontos do tipo crosscap/plano, da imagem de uma aplicação estável. Ao reduzir o espaço das aplicações para o das imersões esáaveis, obtemos que o espaço dos invariantes locais de imersões estáveis é 3-dimensional. Os invariantes que obtemos são: \'I IND. Q\' o número de pares de pontos quádruplos da imagem de uma imersão estável e dois índices de interseção \'I IND. I\'`+ e \'I IND. l\' introduzidos por V. Goryunov em [15]. Como início de um estudo que almejamos realizar sobre a geometria de uma m-variedade em \'R POT. m+1\' com singularidades, obtemos os tipos de contatos genéricos da suspensão do crosscap (única singularidade estavel de \'R POT. 3\' em \'R POT. 4\' ) com hiperplanos de \'R POT.4\' / In this work we obtain that the space of first order local Vassiliev type invariants of stable maps of oriented 3-manifolds in \'R POT. 4\' is 4-dimensional. We give a geometric interpretation for two of the four generators of this space, namely, \'I IND. Q\' the number of quadruple points and \'I IND. C / P\' the number of pairs of points of crosscap/plane type, of the image of a stable map. In the case of stable immersions, we obtain that the space of local invariants of stable immersions is 3-dimensional. The invariants that we obtain are: \'I IND. Q\' the number of pairs of quadruple points of the image of a stable immersion and the positive and negative linking invariants \'I IND. I`+ and I\'I IND., l\' introduced by V. Goryunov in [15]. As a beging of a study that we want to realise about the geometry of a m-manifold in \'R POT. m+1\' with singularities, we obtain the generic contacts of the suspension of crosscap (the only stable singularity from \'R POT. 3\' to \'R POT. 4\') with hyperplanes of \'R POT. 4\'
115

Computing topological dynamics from time series

Unknown Date (has links)
The topological entropy of a continuous map quantifies the amount of chaos observed in the map. In this dissertation we present computational methods which enable us to compute topological entropy for given time series data generated from a continuous map with a transitive attractor. A triangulation is constructed in order to approximate the attractor and to construct a multivalued map that approximates the dynamics of the linear interpolant on the triangulation. The methods utilize simplicial homology and in particular the Lefschetz Fixed Point Theorem to establish the existence of periodic orbits for the linear interpolant. A semiconjugacy is formed with a subshift of nite type for which the entropy can be calculated and provides a lower bound for the entropy of the linear interpolant. The dissertation concludes with a discussion of possible applications of this analysis to experimental time series. / by Mark Wess. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
116

Flat and Round Singularity theory / A teoria da singularidade plana e redonda

Salarinoghabi, Mostafa 29 April 2016 (has links)
We propose in this thesis a way to study deformations of plane curves that take into consideration the geometry of the curves as well as their singularities. We deal in details with local phenomena that occur generically in two-parameter families of curves. We obtain information on the inflections and vertices appearing on the deformed curves. We also obtain the configurations of the evolutes of the curves and of their deformations, and apply our results to orthogonal projections of space curves. Finally, we consider the profile (outline, apparent contour) of a smooth surface in the Euclidian 3-space. This is the image of the singular set of an orthogonal projection of the surface. The profile is a plane curve and may have singularities. We study the changes in the geometry of the profile as the direction of projection changes locally in the unit sphere. / Propomos nesta tese um método para estudar deformações de curvas planas que leva em consideração a geometria delas, bem como as suas singularidades. Consideramos em detalhes os fenômenos locais que ocorrem genericamente em famílias de curvas com dois parâmetros. Obtemos informações sobre as inflexões e vértices que aparecem nas curvas deformadas. Obtemos também as configurações das evolutas das curvas e das suas deformações e aplicamos os nossos resultados nas projeções ortogonais de curvas espaciais. Finalmente, consideramos o perfil de uma superfície regular no espaço Euclidiano R3. O perfil é a imagem do conjunto singular de uma projeção ortogonal da superfície, esta é uma curva plana e pode ter singularidades. Estudamos as alterações na geometria do perfil quando a direção de projeção muda localmente na esfera unitária.
117

Structure of singular sets local to cylindrical singularities for stationary harmonic maps and mean curvature flows

Wells-Day, Benjamin Michael January 2019 (has links)
In this paper we prove structure results for the singular sets of stationary harmonic maps and mean curvature flows local to particular singularities. The original work is contained in Chapter 5 and Chapter 8. Chapters 1-5 are concerned with energy minimising maps and stationary harmonic maps. Chapters 6-8 are concerned with mean curvature flows and Brakke flows. In the case of stationary harmonic maps we consider a singularity at which the spine dimension is maximal, and such that the weak tangent map is homotopically non-trivial, and has minimal density amongst singularities of maximal spine dimen- sion. Local to such a singularity we show the singular set is a bi-Hölder continuous homeomorphism of the unit disk of dimension equal to the maximal spine dimension. A weak tangent map is translation invariant along a subspace, and invariant under dilations, so it completely defined by its values on a sphere. Such a map is said to be homotopically non-trivial if the mapping of a sphere into some target manifold cannot be deformed by a homotopy to a constant map. For an n-dimensional mean curvature flow we consider a singularity at which we can find a shrinking cylinder as a tangent flow, that collapses on an (n−1)-dimensional plane. Local to such a singularity we show that all singularities have such a cylindrical tangent, or else have lower Gaussian density than that of the shrinking cylinder. The subset of cylindrical singularities can be shown to be contained in a finite union of parabolic (n − 1)-dimensional Lipschitz submanifolds. In the case that the mean curvature flow arises from elliptic regularisation we can show that all singularities local to a cylindrical singularity with (n − 1)-dimensional spine are either cylindrical singularities with (n − 1)-dimensional spine, or contained in a parabolic Hausdorff (n − 2)-dimensional set.
118

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Itikawa, Jackson 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
119

Resolution of singularities in foliated spaces / Résolution des singularités dans un espace feuilleté

Belotto Da Silva, André Ricardo 28 June 2013 (has links)
Considérons une variété régulière analytique M sur le corps réel ou complexe, un faisceau d'idéaux J défini sur M, un diviseur à croisement normaux simples E et une distribution singulière involutive Θ tangent à E.L'objectif principal de ce travail est d'obtenir une résolution des singularités du faisceau d'idéaux J qui préserve certaines ``bonnes" propriétés de la distribution singulière Θ. Plus précisément, la propriété de R-monomialité : l'existence d'intégrales premières monomiales. Ce problème est naturel dans le contexte où on doit étudier l'interaction d'une variété et d'un feuilletage et, donc, est aussi reliée au problème de la monomilisation des applications et de résolution ``quasi-lisse" des familles d'idéaux.- Le premier résultat donne une résolution globale si le faisceau d'idéaux J est invariant par la distribution singulière;- Le deuxième résultat donne une résolution globale si la distribution singulière Θ est de dimension 1 ;- Le troisième résultat donne une uniformisation locale si la distribution singulière Θ est de dimension 2.On présente aussi deux utilisations des résultats précédents. La première application concerne la résolution des singularités en famille analytique, soit pour une famille d'idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique les résultats à un problème de système dynamique, motivé par une question de Mattei. / Let M be an analytic manifold over the real or complex field, J be a coherent and everywhere non-zero ideal sheaf over M, E be a reduced SNC divisor and Θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf J that preserves some ``good" properties of the singular distribution Θ. More precisely, the R-monomial property : the existence of local monomial first integrals. This problem arises naturally when we study the ``interaction" between a variety and a foliation and, thus, is also related with the problem of monomialization of maps and of ``quasi-smooth" resolution of families of ideal sheaves.- The first result is a global resolution if the ideal sheaf J is invariant by the singular distribution Θ;- The second result is a global resolution if the the singular distribution Θ has leaf dimension 1;- The third result is a local uniformization if the the singular distribution Θ has leaf dimension 2;We also present two applications of the previous results. The first application concerns the resolution of singularities in families, either of ideal sheaves or vector fields. For the second application, we apply the results to a dynamical system problem motivated by a question of Mattei.
120

Smallest poles of Igusa's and topological zeta functions and solutions of polynomial congruences

Segers, Dirk 30 April 2004 (has links) (PDF)
Igusa's p-adic zeta function is associated to a polynomial f in several variables over the integers and to a prime p. It is a meromorphic function which encodes for every i the number of solutions M_i of f=0 modulo p^i. The intensive study of Igusa's p-adic zeta function by using an embedded resolution of f led to the introduction of the topological zeta function. This geometric invariant of the zero locus of a polynomial f in several variables over the complex numbers was introduced in the early nineties by Denef and Loeser. It is a rational function which they obtained as a limit of Igusa's p-adic zeta functions and which is defined by using an embedded resolution.<br />I have studied the smallest poles of the topological zeta function and the smallest real parts of the poles of Igusa's p-adic zeta function. For n=2 and n=3, I obtained results by using an embedded resolution of singularities. I discovered that the smallest real part of a pole of Igusa's p-adic zeta function is related with the divisibility of the M_i by powers of p. I obtained a general theorem on the divisibility of the M_i by powers of p, which I used to obtain the optimal lower bound for the real part of a pole of Igusa's p-adic zeta function in arbitrary dimension n. I obtained this lower bound also for the topological zeta function by taking the limit.

Page generated in 0.2895 seconds