• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Compact-size linearly tapered slot antenna for portable ultra-wideband imaging systems

Zhu, F., Gao, S., Ho, A.T.S., See, Chan H., Abd-Alhameed, Raed, Li, J., Xu, J. 10 August 2012 (has links)
No / A compact-size asymmetrical linearly tapered slot antenna required for portable ultra-wideband (UWB) imaging systems is presented. The total antenna size is reduced compared with the conventional linearly tapered slot antenna by using a triangular slot on the left-hand side of the tapered-shaped radiator, whereas introducing a corrugated pattern of cuts on the right side. The antenna operates over a wide bandwidth extending from 3.1 to 10.6 GHz with a maximum gain of 8.5 dBi. Stable radiation patterns are observed across the operational bandwidth, with cross-polarization levels below 20 dB. The realized antenna structure occupies a volume of 35 x 36 x 0.8 mm3, and possesses the essential time domain fidelity needed for UWB imaging applications. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.
12

Investigation, design and implementation of circular-polarised antennas for satellite mobile handset and wireless communications : simulation and measurement of microstrip patch and wire antennas for handheld satellite mobile handsets and investigations of polarization polarity, specific absorption rate, and antenna design optimization using genetic algorithms

Khalil, Khaled January 2009 (has links)
The objectives of this research work are to investigate, design and implement circularly-polarized antennas to be used for handheld satellite mobile communication and wireless sensor networks. Several antennas such as Quadrifilar Spiral Antennas (QSAs), two arm Square Spiral and stripline or coaxially-fed microstrip patch antennas are developed and tested. These antennas are investigated and discussed to operate at L band (1.61-1.6214GHz) and ISM band (2.4835-2.5GHz) A substantial size reduction was achieved compared to conventional designs by introducing special modifications to the antenna geometries. Most of the antennas are designed to produce circularly-polarized broadside-beam except for wireless sensor network application a circularly-polarized conical-beam is considered. The polarization purity and Specific Absorption Rate (SAR) of two dual-band antennas for satellite-mobile handsets next to the human head are investigated and discussed, using a hybrid computational method. A small distance between the head and the handset is chosen to highlight the effects of the relatively high-radiated power proposed from this particular antenna. A Genetic Algorithm in cooperation with an electromagnetic simulator has been introduced to provide fast, accurate and reliable solutions for antenna design structures. Circularly-polarized quadrifilar helical antenna handset and two air-dielectric microstrip antennas were studied. The capabilities of GA are shown as an efficient optimisation tool for selecting globally optimal parameters to be used in simulations with an electromagnetic antenna design code, seeking convergence to designated specifications. The results in terms of the antenna size and radiation performance are addressed, and compared to measurements and previously published data.
13

Analysis and Design of a Multifunctional Spiral Antenna

Chen, Teng-Kai 2012 August 1900 (has links)
The Archimedean spiral antenna is well-known for its broadband characteristics with circular polarization and has been investigated for several decades. Since their development in the late 1950's, establishing an analytical expression for the characteristics of spiral antenna has remained somewhat elusive. This has been studied qualitatively and evaluated using numerical and experimental techniques with some success, but many of these methods are not convenient in the design process since they do not impart any physical insight into the effect each design parameter has on the overall operation of the spiral antenna. This work examines the operation of spiral antennas and obtains a closed-form analytical solution by conformal mapping and transmission line model with high precision in a wide frequency band. Based on the analysis of spiral antenna, we propose two novel design processes for the stripline-fed Archimedean spiral antenna. This includes a stripline feed network integrated into one of the spiral arms and a broadband tapered impedance transformer that is conformal to the spiral topology for impedance matching the nominally-high input impedance of the spiral. A Dyson-style balun located at the center facilitates the transition between guided stripline and radiating spiral modes. Measured and simulated results for a probe-fed design operating from 2 GHz to over 20 GHz are in excellent agreements to illustrate the synthesis and performance of a demonstration antenna. The research in this work also provides the possibility to achieve conformal integration and planar structural multi-functionality for an Unmanned Air Vehicle (UAV) with band coverage across HF, UHF, and VHF. The proposed conformal mapping analysis can also be applied on periodic coplanar waveguides for integrated circuit applications.

Page generated in 0.0364 seconds