• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 216
  • 64
  • 25
  • 13
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 808
  • 808
  • 204
  • 198
  • 114
  • 82
  • 80
  • 79
  • 73
  • 65
  • 63
  • 56
  • 52
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Influence of lakes and peatlands on groundwater contribution to Boreal streamflow

2013 March 1900 (has links)
How much groundwater flows to boreal streams depends on the relative contributions from each landscape unit (forested uplands, lakes, and peatlands) within a catchment along with its hydrogeologic setting. Although there is an understanding of the hydrologic processes that regulate groundwater outputs from individual landscape units to their underlying aquifers (both coarse- and fine-textured) in the boreal forest, less understood is how the topography, typology, and topology (i.e. hydrologic connectivity) of the landscape units regulates groundwater flow to streams. Improved understanding of groundwater-stream interactions in the Boreal Plain of Alberta and Saskatchewan is critical as this region is undergoing substantial environmental change from land cover disturbances for energy and forestry industries and climate change. This thesis determines groundwater-stream interactions during the autumn low-flow period in a 97 km2 glacial outwash sub-catchment of White Gull Creek Research Basin, Boreal Ecosystem Research and Modelling Site, Saskatchewan. The catchment (Pine Fen Creek) is comprised of a large (30 km2) valley-bottom peatland, two lakes, and jack pine (Pinus banksiana) uplands. The pine uplands are important areas of annual groundwater recharge for the catchment. Vertical hydraulic gradients (VHGs) show frequent flow reversals between the lakes and sand aquifer, and spatially diverse VHGs between the peatland and sand aquifer. Groundwater flow nets and lateral hydraulic gradients indicate the stream receives groundwater along its length. Isotopic samples of end members corroborate the hydrometric data. Catchment streamflow response during the 2011 low flow period was not simply the addition of net groundwater inputs from each landscape unit. Instead, the large size, valley-bottom position, and short water ‘memory’ of the peatland were the critical factors in regulation of catchment streamflow during low flow periods. Peatland hydrologic function alternated between a source and sink of runoff (surface and subsurface) to the stream, dependent on the position of the water table; a value of 0.15 m below peat surface was the critical functional tipping point. Given the high percentage of peatlands (21%) within the Boreal Plain, incorporating their runoff threshold is required in parameterizing runoff generation in hydrological models, and thus predicting impacts of peatland degradation and forest clearing on streamflow.
242

Carotenoids in the eggs of American coots : associations with size of eggs, local environment and diet

Butt, Usne Josiah 03 January 2006
I studied carotenoids in the eggs of American coots (<i>Fulica americana</i>) from 3 study sites in Saskatchewan, Canada. I supplemented two diet types designed to reduce carotenoids in the diet of laying coots to investigate the relationship of carotenoids and the size of eggs and to examine the allocation of carotenoids into eggs.</p><p>In chapter 2, I examined influences of local environment, food quantity and food quality on egg size. Carotenoid content and stable nitrogen and carbon isotopes in yolk were measured and used to elucidate whether variation in type of food eaten contributes to egg size. By analyzing isotopes in coot tissues, I confirmed that coots use endogenous lipid reserves for egg formation but not endogenous protein reserves, and the size of eggs is more dependent on exogenous sources of nutrients. My data demonstrate that carotenoids are not causal in egg size, but are components of natural, high quality diets.</p> <p>Carotenoids are obtained through the diet and deposited into egg yolk. It has been hypothesized that concentrations and percentages of individual carotenoids can be labile and dependent on diets or maintained in an optimal balance to meet requirements of embryos. In chapter 3, I investigate deposition of carotenoids in egg yolk among nesting locales, among hens within a site and among treatments in a diet manipulation experiment. My data show maintenance in the percent composition of a suite of 3 important carotenoids, lutein, zeaxanthin and âcarotene, independent of scale of investigation and in contrast to other individual carotenoids that appear to vary in proportions based on diet. These results suggest that birds can maintain nutritional balances in their eggs despite variation in diets.</p><p>In chapter 4, I tested 3 hypotheses regarding the apportionment of carotenoids into egg yolk over the laying sequence. Without exception, concentrations of these nutrients have previously been shown to decline with egg sequence. In contrast to these findings, coots actually increased the carotenoid concentration in yolks over the laying sequence. My experimental evidence supports the explanation that this pattern of deposition depends on carotenoid availability to the laying female.
243

Greenhouse gas cycling in experimental boreal reservoirs

Venkiteswaran, Jason James January 2008 (has links)
Hydroelectric reservoirs account for 59% of the installed electricity generating capacity in Canada and 26% in Ontario. Reservoirs also provide irrigation capacity, drinking water, and recreational opportunities. Further, they continue to be built in northern Canada, neighbouring boreal countries, and around the world. Yet given their socio-economic importance, they are understudied with respect to greenhouse gas emissions, nutrient and mercury cycling, and aquatic metabolism. As one of many electricity generating options, hydroelectricity is viewed as well-tested because of its long history and diverse applications in mega-projects, run-of-the-river dams, and small, local applications. It is also considered renewable from a fuel stand-point because an adequate long-term supply of water is assumed. One of several significant criticisms of hydroelectric development is that reservoirs may be a significant source of greenhouse gases to the atmosphere relative to the amount of electricity produced due to flooding the landscape. As a result of the dearth of information on reservoir development and both greenhouse gases and aquatic metabolism, a pair of whole-ecosystem reservoir experiments were conducted staring in 1991. Three upland boreal forest reservoirs with differing amounts of pre-flood stored organic carbon were built in northwestern Ontario and flooded for five years. The rates of net greenhouse gas production in these reservoirs were determined by calculating mass budgets for carbon dioxide and methane. Additionally, rates of biological processes were determined by combining the mass budgets with measurements of the stable isotopes of carbon and oxygen. Assembling mass and isotope-mass budgets required three related projects on gas exchange, methane oxidation, and oxygen isotopes. To estimate the gas exchange coefficient for each of the upland reservoirs, a comparative-methods study was undertaken. Methane oxidation enrichment factors were determined in upland and wetland boreal reservoirs so that the importance of methane oxidation in these ecosystems could be assessed. In order to interpret the diel changes in both oxygen concentrations and their isotopic ratios, a dynamic model was developed. This model, PoRGy, was successfully applied to the upland boreal reservoirs as well as prairie rivers and ponds. Further, PoRGy was used to understand the interplay between the key parameters that control oxygen concentrations, to compare aquatic ecosystems, to make quantitative estimates of ecosystem metabolism, and to assess the vulnerability of aquatic ecosystems under various environmental stressors. Carbon isotope-mass budgets were used to conclude that community respiration rates declined quickly in the upland reservoirs and had declined by half over five years. This suggested that the most labile organic carbon is quickly consumed but decomposition continued for the five-year life of the project. Net primary production rates were similar for three years, with a small peak in the second or third year, before declining by half by the fifth year. Together, these results indicated that aquatic metabolism slowed over five years while the reservoirs remained a source of greenhouse gases to the atmosphere each year. Net methane production was greatest in the third year of flooding then decreasing by about half by the fifth year. Methane ebullition also peaked in the third year and declined by two-thirds by the fifth year. Together, these results indicated that methanogenesis was greatest in the third year of flooding. The flux of methane to the atmosphere grew in importance relative to that of carbon dioxide over the five years of the experiment. Community respiration and primary production could not be estimated directly from the oxygen isotope-mass budgets since the oxygen respiration enrichment factor remains poorly constrained. Instead, three estimates were made, each based on a different assumption. In general, these estimates suggested that rates of community respiration and primary production decreased slightly for three years and most rapidly in the final two years. The oxygen isotope-mass budgets provided a new method for assessing and constraining community metabolism and greenhouse gas fluxes to the atmosphere. One of the major hypotheses of the whole-ecosystem reservoir experiments was that pre-flood organic carbon stores less tree boles were positively related to greenhouse gas fluxes. Within the three upland boreal forest reservoirs, this hypothesis did not hold true. Over five years, community respiration in the three reservoirs was within 5% of each other. When methane is included, to assess total greenhouse gas fluxes to the atmosphere, the reservoirs were within 1% of each other. Organic carbon stores were therefore poor short-term predictors of carbon lability and greenhouse gas fluxes. This research presented two methods for determining biological rates at the whole-ecosystem scale: one using carbon isotopes and one using oxygen isotopes. Temporal evolution of greenhouse gas cycling within the upland reservoirs was different than in the wetland reservoir and should inform how reservoir development is done vis-à-vis the amount of flooded land of each type versus electricity production. Medium-term estimates of greenhouse gas fluxes suggest that upland reservoirs do not have adequate pre-flood organic carbon stores to sustain elevated levels of decomposition the way wetlands do. The strong evidence of continued production of dissolved organic carbon in the upland reservoirs should concern operators of municipal drinking water reservoirs since elevated dissolved organic carbon can make disinfection difficult.
244

Greenhouse gas cycling in experimental boreal reservoirs

Venkiteswaran, Jason James January 2008 (has links)
Hydroelectric reservoirs account for 59% of the installed electricity generating capacity in Canada and 26% in Ontario. Reservoirs also provide irrigation capacity, drinking water, and recreational opportunities. Further, they continue to be built in northern Canada, neighbouring boreal countries, and around the world. Yet given their socio-economic importance, they are understudied with respect to greenhouse gas emissions, nutrient and mercury cycling, and aquatic metabolism. As one of many electricity generating options, hydroelectricity is viewed as well-tested because of its long history and diverse applications in mega-projects, run-of-the-river dams, and small, local applications. It is also considered renewable from a fuel stand-point because an adequate long-term supply of water is assumed. One of several significant criticisms of hydroelectric development is that reservoirs may be a significant source of greenhouse gases to the atmosphere relative to the amount of electricity produced due to flooding the landscape. As a result of the dearth of information on reservoir development and both greenhouse gases and aquatic metabolism, a pair of whole-ecosystem reservoir experiments were conducted staring in 1991. Three upland boreal forest reservoirs with differing amounts of pre-flood stored organic carbon were built in northwestern Ontario and flooded for five years. The rates of net greenhouse gas production in these reservoirs were determined by calculating mass budgets for carbon dioxide and methane. Additionally, rates of biological processes were determined by combining the mass budgets with measurements of the stable isotopes of carbon and oxygen. Assembling mass and isotope-mass budgets required three related projects on gas exchange, methane oxidation, and oxygen isotopes. To estimate the gas exchange coefficient for each of the upland reservoirs, a comparative-methods study was undertaken. Methane oxidation enrichment factors were determined in upland and wetland boreal reservoirs so that the importance of methane oxidation in these ecosystems could be assessed. In order to interpret the diel changes in both oxygen concentrations and their isotopic ratios, a dynamic model was developed. This model, PoRGy, was successfully applied to the upland boreal reservoirs as well as prairie rivers and ponds. Further, PoRGy was used to understand the interplay between the key parameters that control oxygen concentrations, to compare aquatic ecosystems, to make quantitative estimates of ecosystem metabolism, and to assess the vulnerability of aquatic ecosystems under various environmental stressors. Carbon isotope-mass budgets were used to conclude that community respiration rates declined quickly in the upland reservoirs and had declined by half over five years. This suggested that the most labile organic carbon is quickly consumed but decomposition continued for the five-year life of the project. Net primary production rates were similar for three years, with a small peak in the second or third year, before declining by half by the fifth year. Together, these results indicated that aquatic metabolism slowed over five years while the reservoirs remained a source of greenhouse gases to the atmosphere each year. Net methane production was greatest in the third year of flooding then decreasing by about half by the fifth year. Methane ebullition also peaked in the third year and declined by two-thirds by the fifth year. Together, these results indicated that methanogenesis was greatest in the third year of flooding. The flux of methane to the atmosphere grew in importance relative to that of carbon dioxide over the five years of the experiment. Community respiration and primary production could not be estimated directly from the oxygen isotope-mass budgets since the oxygen respiration enrichment factor remains poorly constrained. Instead, three estimates were made, each based on a different assumption. In general, these estimates suggested that rates of community respiration and primary production decreased slightly for three years and most rapidly in the final two years. The oxygen isotope-mass budgets provided a new method for assessing and constraining community metabolism and greenhouse gas fluxes to the atmosphere. One of the major hypotheses of the whole-ecosystem reservoir experiments was that pre-flood organic carbon stores less tree boles were positively related to greenhouse gas fluxes. Within the three upland boreal forest reservoirs, this hypothesis did not hold true. Over five years, community respiration in the three reservoirs was within 5% of each other. When methane is included, to assess total greenhouse gas fluxes to the atmosphere, the reservoirs were within 1% of each other. Organic carbon stores were therefore poor short-term predictors of carbon lability and greenhouse gas fluxes. This research presented two methods for determining biological rates at the whole-ecosystem scale: one using carbon isotopes and one using oxygen isotopes. Temporal evolution of greenhouse gas cycling within the upland reservoirs was different than in the wetland reservoir and should inform how reservoir development is done vis-à-vis the amount of flooded land of each type versus electricity production. Medium-term estimates of greenhouse gas fluxes suggest that upland reservoirs do not have adequate pre-flood organic carbon stores to sustain elevated levels of decomposition the way wetlands do. The strong evidence of continued production of dissolved organic carbon in the upland reservoirs should concern operators of municipal drinking water reservoirs since elevated dissolved organic carbon can make disinfection difficult.
245

The origin, transformation and deposition of sediments in Lake Bosomtwe/Bosumtwi (Ghana, West Africa)

Otu, Megan Kristin January 2010 (has links)
Recent drought over West Africa (1970s-present) has been a global concern, and the ability to predict the frequency and severity of future droughts is important to mitigate the devastating socio-economic effects of drought. The Sahel region, situated at 10-20°N just south of the arid Sahara Desert and north of the forested Guinea Coast, is particularly vulnerable to drought periodicity because rainfall is already low at 400 mm yr-1. The ability to predict future climate variability depends on adequate knowledge of fluctuations in the past. In West Africa, meteorological records are too sparse and too short in duration to characterize the drought frequency. Consequently, climate reconstructions from lacustrine sediment records are increasingly recognized as an important source of information on past climate variability. Lake Bosomtwe, Ghana (6o30N and 1o25W) was formed over one million years ago by a meteorite impact crater in the Guinea Coast region, just south of the Sahel region. Lake Bosomtwe has a closed-drainage hydrology and lake levels are known to fluctuate with the net flux in rainfall inputs relative to evaporative outputs. In 2004, the International Continental Scientific Drilling Program recovered the complete sediment record for paleoclimatic reconstructions. However, very little has been studied of the limnological conditions that lead to the formation of laminated sediments in Lake Bosomtwe. This thesis has set out to understand the influence climate has on the physical, chemical and biological in-lake processes that generate sedimenting materials, which are preserved as laminated sediment layers. Two years of water column sampling of temperature, oxygen and nutrients at a central deep-water site (78 m water depth maximum) found that this quiescent crater lake is thermally stratified during much of the year, with anoxia persisting below 35 m water depth. During the short dry season of July and August, the monsoon rains that are associated with the intertropical convergence zone (ITCZ) are displaced northwards over the Sahel region (and away from lake Bosomtwe), and cool air temperatures and clear night skies lead to the disruption of the thermocline and circulation of dissolved nutrients nitrogen (N) and phosphorus (P) in Lake Bosomtwe. Phytoplankton primary productivity, as measured by particulate carbon and chlorophyll a concentrations, was found to increase markedly following the nutrient upwelling event in August. Sediment trap samplers deployed at 20 and 30 m water depth captured the pattern of organic matter deposition and a high flux of organic sediment was deposited shortly after the nutrient upwelling episode in August. The composition of these organic-rich sediments was distinguished by a marked depletion in δ13C and enrichment of δ15N, as compared to sediments deposited before and after this event. Spatial assessment of sediment cores identified that presently, visible laminations were preserved at and below 35 m water depth, but, not at shallower depths. Water depth was also positively correlated with the organic matter content in sediment records and could be used to reconstruct pre-historic lake levels down core. The relationship between lake level and organic content in sediments predicted that water levels were likely 22 m lower than present levels during the period ~1425-1610 CE, which corresponds with a climatic periods known as the Little Ice Age (LIA). The spatial sediment trends also revealed that inorganic sedimentation rates had increased since the onset of recent land clearance and road construction in the catchment, particularly to the north, near the town of Abono. For this reason, two cores from the central deep-water region of Lake Bosomtwe were analysed for organic and carbonate content, δ13C and δ15N, nutrients (C, N, P), magnetic susceptibility, greyscale imagery of the x-radiograph and micro-X-ray analysis of elemental constituents. Paleoenvironmental reconstructions during the past 550 years found that climate-driven lake level change was a prominent factor contributing to the organic content of sediments. High inorganic content, iron concentrations and depleted δ13C distinguished a low stand during the LIA (~1425-1610) when pelagic sediments were likely exposed to periodic oxygenation. High concentrations of organic matter, calcium (Ca) and strontium (Sr), enrichment of δ13C and low C:N ratios were indicative of wet years that likely increased lake levels and the depth of water column mixing. However, sediments with high organic content, depleted δ13C signatures and reduced Ca and Sr concentrations were suggestive of drought years that restricted the depth of seasonal water column mixing and nutrient circulation and did not necessarily result in pronounced lake-level change. During the past century, δ13C of bulk matter was positively correlated with the rainfall anomalies (r2 = 0.45, P < 0.002), indicating that droughts can result in reduced primary productivity, which may ultimately lower fishery yields. The communities living within the crater are dependent on subsistence fishing and farming, and predicting the drought frequency and magnitude in this region is essential to protecting both the ecosystem and the human population. Long-range climate forecasts for West Africa predict greater drought and increasing air temperature. However, with a detailed long-term paleoclimatic reconstruction from Lake Bosomtwe sediment records, potentially the accuracy of these predictions can be improved and better equip policy makers to enact a viable action plan in the best interests of the people.
246

Carotenoids in the eggs of American coots : associations with size of eggs, local environment and diet

Butt, Usne Josiah 03 January 2006 (has links)
I studied carotenoids in the eggs of American coots (<i>Fulica americana</i>) from 3 study sites in Saskatchewan, Canada. I supplemented two diet types designed to reduce carotenoids in the diet of laying coots to investigate the relationship of carotenoids and the size of eggs and to examine the allocation of carotenoids into eggs.</p><p>In chapter 2, I examined influences of local environment, food quantity and food quality on egg size. Carotenoid content and stable nitrogen and carbon isotopes in yolk were measured and used to elucidate whether variation in type of food eaten contributes to egg size. By analyzing isotopes in coot tissues, I confirmed that coots use endogenous lipid reserves for egg formation but not endogenous protein reserves, and the size of eggs is more dependent on exogenous sources of nutrients. My data demonstrate that carotenoids are not causal in egg size, but are components of natural, high quality diets.</p> <p>Carotenoids are obtained through the diet and deposited into egg yolk. It has been hypothesized that concentrations and percentages of individual carotenoids can be labile and dependent on diets or maintained in an optimal balance to meet requirements of embryos. In chapter 3, I investigate deposition of carotenoids in egg yolk among nesting locales, among hens within a site and among treatments in a diet manipulation experiment. My data show maintenance in the percent composition of a suite of 3 important carotenoids, lutein, zeaxanthin and âcarotene, independent of scale of investigation and in contrast to other individual carotenoids that appear to vary in proportions based on diet. These results suggest that birds can maintain nutritional balances in their eggs despite variation in diets.</p><p>In chapter 4, I tested 3 hypotheses regarding the apportionment of carotenoids into egg yolk over the laying sequence. Without exception, concentrations of these nutrients have previously been shown to decline with egg sequence. In contrast to these findings, coots actually increased the carotenoid concentration in yolks over the laying sequence. My experimental evidence supports the explanation that this pattern of deposition depends on carotenoid availability to the laying female.
247

Behavior, Ecology, and Conservation of Sea Turtles in the North Atlantic Ocean

McClellan, Catherine Marie January 2009 (has links)
<p>Sea turtles have experienced dramatic population declines during the last century as a consequence of direct harvest, by-catch in fisheries, and habitat loss. Despite almost 50 years of partial international protection, several populations of sea turtles are still at imminent risk of extinction. Our knowledge of their complex life histories is still far from complete; these knowledge gaps hinder our ability to provide scientific advice regarding their conservation and management. It is the very complexity of their life histories, which allows them to exploit widely separated habitats during development, often over the course of decades, which makes them inherently difficult to study. I used satellite telemetry (n=60) to investigate the movements and habitat use patterns of juvenile loggerhead (<italic>Caretta caretta</italic>), green (<italic>Chelonia mydas</italic>), and Kemp's ridley (<italic>Lepidochelys kempii</italic>) sea turtles on their summer feeding grounds in North Carolina estuaries. These turtles migrate into and out of the estuarine waters each spring and autumn, encountering a gauntlet of fishing gear on each journey. The by-catch of sea turtles is an important conservation issue in North Carolina, and throughout the world's oceans. I evaluated conservation measures established to reduce the by-catch of sea turtles in Pamlico Sound's autumnal large-mesh gill net fishery for southern flounder (<italic>Paralichthys lethostigma</italic>), using a spatially explicit predator/prey model. My findings indicated that species-specific habitat preferences contributed to a turtles' risk of encountering fishing gear and that areas of high by-catch are predictable from patterns of overlap between sea turtle habitat use and flounder fishing effort. I then examined how the behavior of green turtles affected their vulnerability to incidental capture in estuarine commercial fisheries. Individual green turtles interact with multiple gears per season as a result of strong site fidelity to habitats also preferred by fishers. Telemetry also allowed me to examine individual variation in movements, habitat use, and site fidelity patterns of juvenile loggerhead turtles, both within the estuary and as the turtles migrated out into the North Atlantic. I used these observations to test the hypothesis of a discrete ontogenetic shift in habitat and diet in juvenile loggerheads. Approximately one-third of large juvenile loggerheads tagged in North Carolina estuaries return to oceanic habitat, sometimes for several years, where they are vulnerable to by-catch in pelagic fisheries. This led me to conclude that the long held notion of a discrete ontogenetic habitat shift between the oceanic and neritic habitat was incorrect for juvenile loggerheads (and possibly also for green turtles). Finally, I explored variation in migratory destinations in these animals through multivariate analyses of carbon and nitrogen stable isotope ratios in blood plasma and red blood cells, and through analysis of sex, genetic, haplotype, body size, and remigration records, and described the trophic niche of these turtles with Bayesian isotope mixing models. Variation in migratory destination (oceanic or neritic habitat) was best described by stable isotope ratios of nitrogen and remigration tendency. Turtles that returned to the open ocean had significantly lower nitrogen ratios than those animals that remained in the neritic zone and their diets retained a substantial contribution of epipelagic prey items. The diet composition of neritic turtles, on the other hand, consisted primarily of estuarine benthic invertebrates during the summertime and autumn foraging season but shifted toward pelagic jellyfish, fish, and <italic>Sargassum</italic> during the overwintering period. Oceanic turtles likely came from open ocean regions prior to entering the summer foraging grounds while neritic turtles likely overwintered at the edge of the Gulf Stream. The agreement between the dietary compositions and migration patterns between the two groups of turtles suggest that these feeding and habitat use strategies were persistent characteristics in the turtles I sampled. My work has improved our understanding of sea turtle habitats in North Carolina estuaries and identified their migratory destinations and overwintering habitats. I hope that this work lays the groundwork for future studies that will explore how variation in habitat use and feeding strategies are manifested in life history traits that affect fitness directly, such as survivorship, growth rates, stage durations, and fecundity.</p> / Dissertation
248

FARM FIELDS TO WETLANDS: BIOGEOCHEMICAL CONSEQUENCES OF RE-FLOODING IN COASTAL PLAIN AGRICULTURAL LANDS

Morse, Jennifer January 2010 (has links)
<p>Whether through sea level rise, farmland abandonment, or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions related to environmental tradeoffs. Wetland restoration in particular is often implemented not only to promote wildlife habitat, but also to improve water quality through nutrient removal, especially in agricultural catchments. The microbial process of denitrification is the central mechanism of nitrogen removal in wetlands and flooded soils, and can be seen as a potential environmental benefit of flooding agricultural lands. While denitrification undoubtedly can remove nitrogen from soil and surface water, higher soil moisture or flooding in wetland soils can also increase the production of greenhouse gases, specifically nitrous oxide and methane, representing a potential environmental tradeoff. Understanding the likely benefits of denitrification and the likely greenhouse gas costs of wetland restoration could help inform environmental policies concerning wetland restoration. </p> <p>Determining whether restored wetlands are larger sources of greenhouse gases compared to contrasting land use types (agriculture and forested wetlands) was the first goal of this dissertation (Chapter 2). We measured gas fluxes from soil and water to the atmosphere, and related environmental variables, in four sites over two years to estimate fluxes of the three major greenhouse gases. We found that carbon dioxide was the major contributor to the radiative balance across all sites, but that in the agricultural site and one of the forested wetland reference sites, nitrous oxide was the second most important contributor. Many studies have shown that methane is more important that nitrous oxide in most freshwater wetlands, as we found in the other forested wetland reference site and in flooded parts of the restored wetland. Overall, we did not find higher greenhouse gas fluxes in the restored wetland compared to agricultural soils or forested wetlands.</p> <p>The controls over nitrous oxide are especially complex, because it can be produced by two complementary processes, nitrification and denitrification, which generally occur under different conditions in the environment. In Chapter 3, we determined the soil and environmental factors that best predicted nitrous oxide fluxes for a subset of our data encompassing gas fluxes measured in November 2007. We found that soil temperature and soil carbon dioxide flux, along with ammonium availability and denitrification potential, were good predictors of nitrous oxide (adj R<super>2</super>=0.81). Although the nitrous oxide model did not perform as well when applied to data from another sampling period, we expect to further develop our modeling efforts to include possible non-linear temperature effects and a larger range of environmental conditions. </p> <p>In Chapter 4, we present results of a stable isotope tracer experiment to determine the relative contribution of nitrification and denitrification to nitrous oxide fluxes in these different land use types, and to determine the response of these processes to changing soil moisture. We added two forms of nitrogen-15 to intact soil cores to distinguish nitrification from denitrification, and subjected the cores to drainage or to a simulated rain event. We found that across the range of soil moisture, the fraction of nitrous oxide produced by denitrification did not change, but within each soil type there was a response to the simulated rain. In mineral soils, the nitrous oxide fraction increased with increasing soil moisture, with the highest mole fraction [N<sub>2</sub>O/(N<sub>2</sub>+N<sub>2</sub>O)] in the agricultural soils, while in the organic soils there was no change or even a decrease. The fraction of nitrous oxide derived from coupled nitrification-denitrification increased with increasing soil moisture, and was much higher than that from denitrification alone in the more organic soils. This suggests that, in these saturated acid-organic soils, nitrification plays an important and underappreciated role in contributing to nitrous oxide fluxes from freshwater wetlands. The results from the laboratory experiment were consistent with patterns we saw in the field and help explain the differential contribution of nitrification and denitrification to nitrous oxide fluxes in different land use types in coastal plain wetlands of North Carolina. </p> <p>Overall, we found that both nitrification and denitrification contribute to nitrous oxide fluxes in coastal plain wetlands in North Carolina, and that nitrification is an especially important source in acid-organic soils under both field-moist and saturated conditions. Although freshwater wetlands, with an average nitrous oxide mole fraction of 0.08, are generally seen as being insignificant sources of nitrous oxide, our study sites ranged from 0.10 to 0.30, placing them closer to agricultural fields (0.38; Schlesinger 2009). Although the ecosystems in our study produced more nitrous oxide than expected for freshwater wetlands, we found no significant tradeoff between the local water quality benefits conferred by denitrification and the global greenhouse gas costs in the restored wetland. These results suggest that, from a nitrogen perspective, wetland restoration in coastal agricultural lands has a net environmental benefit.</p> / Dissertation
249

Natal origin of atlantic bluefin tuna (thunnus thynnus) from the gulf of st. lawrence using &#948;13c and &#948;18o in otoliths

Schloesser, Ryan Walter 15 May 2009 (has links)
Increased knowledge of stock mixing and migration patterns of Atlantic bluefin tuna (Thunnus thynnus) is required to appropriately manage and conserve declining populations. The nursery origin of giant bluefin tuna present in the Gulf of St. Lawrence was identified using stable carbon (δ13C) and oxygen (δ18O) isotopes in sagittal otoliths. Anthropogenic and natural processes are capable of impacting atmospheric and oceanic concentrations of δ13C and δ18O, affecting otolith concentrations. Therefore, inter-decadal variation of δ13C and δ18O in the otolith cores (corresponding to the first year of life) of bluefin tuna was examined prior to stock predictions and temporal variability was detected in both isotope ratios. Significant changes in both δ13C and δ18O were recorded in the otolith cores of individuals with birthdates between 1947 and 2003. Both δ13C and δ18O varied significantly as a function of year of birth, with δ13C decreasing and δ18O increasing over the time period investigated (-2.39×10-2 and 5.78×10-3 per year, respectively). The rate of change in otolith δ13C was nearly identical to the reported rates of atmospheric δ13C depletion, recently attributed to the burning of fossil fuels (referred to as the Suess effect). Observed shifts in otolith δ18O were less pronounced and likely linked to changing physicochemical conditions (i.e. salinity) in oceanic reservoirs over the time period investigated. The results show that otolith cores of bluefin tuna effectively track inter-decadal trends and record past oceanic δ13C and δ18O levels. After adjusting for inter-decadal trends, the isotopic composition of milled otolith cores of giants from three decades (1970s, 1980s, 2000s) and three regions were compared to otolith δ13C and δ18O values of yearling bluefin tuna collected from eastern and western nurseries. Maximum likelihood estimates indicated that 99% of bluefin tuna caught in the Gulf of St. Lawrence fishery originated from the western nursery, with no significant differences among the decades and regions examined. Results suggest that little to no mixing of eastern and western populations of adult bluefin tuna occurs in the Gulf of St. Lawrence, making it important for the management and conservation of the declining western population.
250

Tectonic fibrous veins: initiation and evolution. Ouachita Orogen, Arkansas

Cervantes, Pablo 15 May 2009 (has links)
Veins are ubiquitous features in deformed rocks. Despite observations on syntectonic veins spanning two centuries, fundamental questions remain unanswered. Their origin as fractures is largely established but it is still not known why these fractures initiate where they do and how the vein evolves once started. We studied veins from the Lower Ordovician Mazarn Formation in the Arkansas’ Ouachitas combining textural observations, stable isotopes, fluid inclusions, SEM-based cathodoluminescence and electron back-scattered diffraction to understand the initial stage of vein formation, its later evolution, the role of fluids and their environment of formation. The veins are located at boudin necks and are synchronous with cleavage formation. Texturally, veins are characterized by veinlets (thin veins between 5 and 25 μm thick) that parallel the vein-host interface and fibers (columns of quartz or calcite) perpendicular to the vein-host interface between 30 and 350 μm wide. Veinlets are localized fractures filled with quartz. The crystallographic orientation of the precipitated material in veinlets is inherited from host grains at the micron scale and replicated as fibers’ lengths grow to centimeters. The vein-forming fluid was cyclically supersaturated yet never very far from saturation. δ18O values of vein quartz and host are within 2‰ of each other suggesting that the fluid was rock-buffered. Nevertheless, δ18O and δ13C define a ‘J’ shaped trend. Although it is not possible to date any portion of this curve, the simplest explanation is that the fluid evolved from rock-buffered in a closed system to fluid-dominated in an open system. The range of pressure-temperature conditions of vein formation is between 275 and 385 °C and 1100 and 3400 bars, from fluid inclusions and quartz-calcite oxygen isotopes thermometry. By examining a vein from tip to middle, we have established a sequence of events from inception to maturity in vein growth. Vein formation starts with folding followed by flattening of resistant sandstone layers which in turn gives rise to boudinage. Boudinage formation allowed for fracture localization along boudin-necks. The vein grew by the repeated addition of veinlets in the neck region. Recrystallization later modified the fibers by obliterating some evidence of the veinlets and moving fiber walls.

Page generated in 0.0497 seconds