• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 216
  • 64
  • 25
  • 13
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 808
  • 808
  • 204
  • 198
  • 114
  • 82
  • 80
  • 79
  • 73
  • 65
  • 63
  • 56
  • 52
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Seasonal Changes in the Sinking Particulate Flux and in the Nitrogen Cycle within the Euphotic and Twilight Zones of the Cariaco Basin, Venezuela

Montes-Herrera, Enrique 01 January 2011 (has links)
This study explored the effects of seasonal variability on the geochemistry of sinking pthesiss and on the nitrogen cycle of the Cariaco Basin. Pthesis fluxes were measured at the base of the euphotic zone (the depth of 1% of photosynthetically active radiation - PAR) with drifting sediment traps during months of upwelling and non-upwelling regimes from March 2007 to November 2009. Flux estimates were analyzed in the context of seasonal variations in sea surface temperature, primary productivity, and chlorophyll a concentrations using data generated by the CARIACO Time-series Program as well as satellite data. Additionally, nine years (1996-2000 and 2004-2007) of nutrients, phytoplankton taxonomy and δ15N of sinking pthesis data within the twilight zone (225 m) from the CARIACO Time-series Program were examined. Results showed that the flux of organic matter responded to changes in surface chlorophyll a but not to primary production. Sinking organic matter decreased by an order of magnitude from the base of the euphotic zone to the oxic-anoxic interface; most of the organic matter produced in surface waters was remineralized before leaving the upper 50-100 m. Lithogenic material often represented a large fraction of the flux. Isotopic analyses showed that 13C/12C ratios of sinking organic carbon were enriched (~-19‰) during the upwelling period and depleted during relaxation (~-23‰). This reflects seasonal changes in inorganic carbon utilization by phytoplankton and suggests that the δ13C of organic carbon in Cariaco sediments can be used as a proxy for carbon fixation by primary producers. The δ15N of the settling flux was influenced by the strength of the upwelling and the presence of the nitrogen fixer Trichodesmium thiebautii in the basin in different seasons; the 15N/14N ratio of sinking nitrogen reflects both imported and local nitrogen fixation signals. This result argues against previous interpretations of the δ15N from the basin's sedimentary record, which suggested that the nitrogen isotopic composition of flux is influenced by denitrification at the oxic-anoxic interface. Dissolved gas samples from the Cariaco eastern and western sub-basins from September 2008 (non-upwelling) and March 2009 (upwelling) were studied to assess the production of biogenic nitrogen gas through mass spectrometric N2/Ar ratiometry. Excess nitrogen gas indicated that upwelling affects the intensity of denitrification at the oxic-anoxic interface. In four of the six stations the concentration of biogenic nitrogen gas at the oxic-anoxic interface was 2.7-6.1 µM N higher during the upwelling period than during the relaxation season (p< 0.001), implying that denitrification in the basin was stimulated by the vertical flux of organic matter and/or the ventilation of the oxic-anoxic interface by oxygenated and nutrient-rich intermediate Caribbean waters.
252

Palaeoclimatic Significance of Perennial Ice Accumulations in Caves: an Example from Scarisoara Ice Cave, Romania

Persoiu Tiritu, Aurel 01 January 2011 (has links)
Stable isotopes in ice cores drilled in the polar and high-mountain region have been used intensively to reconstruct past climatic changes and atmospheric dynamics. However, no similar studies have been conducted on perennial ice accumulations in caves due to a limited understanding of the links between the external and cave environments, and the way in which the climatic signal can be recorded by the cave ice. In this thesis, we successfully designed and build a research methodology for the reconstruction of past climatic changes based on perennial ice accumulation in caves, using as example the Scarisoara Ice Cave, Romania. The ice block in this cave preserves a large variety of candidate proxies for both past climate and environmental changes, the most significant ones being the stable isotopic composition of the ice (a proxy for air temperature) and pollen remains. The ice block has formed by the successive accumulation of layers formed by the freezing of water accumulated from late summer through mid-autumn precipitation. An original method has been developed for the reconstruction of the stable isotopic composition of water before freezing, and further, of the late summer air temperature. Pollen in the ice has been found to reflect changes in surface vegetation at both local and regional scale. A 22 m long ice core has been extracted from the ice block, and stable isotope analyses were performed at high resolution on its entire length. Twenty-sex radiocarbon ages have been used to derive a precise depth-age model for this core. The stable isotope data covers almost the entire Holocene, between 0.09 and 9.75 ka BP. The first order fluctuation broadly follows the orbitally induced Northern Hemisphere September insolation, with a minimum in the early Holocene, a slow climb towards a maximum at ~5.0 ka, followed by a very slow cooling towards the present, accentuated after ~0.5 ka. Superimposed on the long-term variations a series of rapid cooling events (RCE) are recorde, the most notable ones being at 9.5 ka, 8.2 ka, 7.9 ka, 6 ka, 4.2 ka, 3.2 ka and 0.9 ka. The timing of these RCEs agrees remarkably well with the Holocene rapid climatic changes and the ice rafted debris (IRD) events in the North Atlantic (NA). Our data suggests that the general trends of temperature changes in mainland Europe during the Holocene were governed by changes in solar output. RCEs were synchronous with NA IRD events, the NA climatic signal originating from sea surface temperature changes and being amplified by atmospheric dynamics. The stable isotope data spanning the past 2000 years clearly shows four climatic events over this interval, attributed to the Roman Warm period (RWP), the Dark Ages Cold Period (DACP), Medieval Warm Period (MWP) and the Little Ice Age (LIA). Our data suggests that air temperature was highly variable during the LIA and more stable during the warm MWP and RWP. As ice caves were described in many parts of the world otherwise poorly represented in ice-based paleoclimatology, the results of this study could open a new direction in paleoclimatic research, so that an array of significant paleoclimate data can be developed based on their study.
253

Modification of Trophic Links between an Omnivore and Macroinfaunal Prey from Sandy Beaches of differing Physical Regimes

Morrow, Kristina Joan 01 January 2012 (has links)
Sandy beach ecosystems have been studied worldwide; however, ecological data are sparse for the extensive barrier islands of Florida. Accordingly, I investigated the feeding patterns of the ghost crab (Ocypode quadrata), a dominant omnivore inhabiting beaches along the Floridian coast. Density data was collected for ghost crabs and swash macroinfaunal prey. In addition, I utilized stable isotopes in conjunction with the mixing models IsoSource and SIAR to characterize diets of ghost crabs across three barrier islands in spring and summer 2011. Results showed that ghost crabs at Cayo Costa feed primarily on swash macroinfauna, while those from Anclote Key shifted their diet to one comprised primarily of semi-terrestrial amphipods. However, at Honeymoon Island, ghost crab isotopic signatures were best explained by a mixed diet of both macroinfauna and wrack-associated prey. The unique consumption of wrack fauna at Anclote Key co-occurs with comparatively low infaunal densities and biomass, and modified ghost crab behavior due to trait-mediated effects. My results are novel because they suggest that wrack-associated fauna may be an important food source for ghost crabs in certain beach regimes.
254

Light-Environment Controls and Basal Resource Use of Planktonic and Benthic Primary Production

Radabaugh, Kara 01 January 2013 (has links)
Consumers in marine and estuarine environments have a strong reliance on planktonic and benthic primary production. These two basal resources form the foundation of aquatic food webs, yet the abundance of phytoplankton and benthic algae are frequently inversely related due to competition for light and nutrients. As a result, optimal habitats for benthic and planktonic consumers vary spatially and temporally. To investigate these trends, three studies were conducted focusing on light attenuation and basal resources in a bay, river, and on a continental shelf. δ13C and δ15N stable isotopes can be used as endogenous tracers to determine both the trophic level and basal resource use of consumers. δ13C values of primary producers are determined by the isotopic values of available CO2 and by the degree of photosynthetic fractionation (εp) that occurs during photosynthesis. εp by aquatic algae is greater in high CO2concentrations, high light, during slow growth rates, and for cells with a small surface area to volume ratio. Interaction among these parameters complicates prediction of algal εp in a natural setting, prompting the investigation as to which factors would impact εp and δ13C in a dynamic estuary. Community-level fractionation of an assemblage of filamentous algae, pennate diatoms, and centric diatoms grown on glass plates was found to be positively correlated with photosynthetically active radiation (PAR), resulting in higher δ13C values for organic matter in low-light conditions. These results support the concept that the low-light benthic environment may contribute to the widely observed phenomenon of ~5 / higher δ13C values in benthic algae compared to phytoplankton. Spatial and temporal variability in the isotopic baseline provides evidence of shifting biogeochemical controls on primary production. The West Florida Shelf in the eastern Gulf of Mexico transitions from a eutrophic ecosystem near the Mississippi River to an oligotrophic ecosystem in offshore continental shelf waters. Spatiotemporal variability in the δ13C and δ15N signatures of primary producers and fish populations were examined along this gradient. Muscle δ15N from three widely distributed fish species exhibited strong longitudinal isotopic gradients that coincided with the principal trophic gradient, whereas δ13C values of fish muscle and benthic algae were correlated with depth. The three fish species had relatively high site fidelity, as isotopic gradients were consistent between seasons and years. Isotopic mixing models showed all three fish species had a significant reliance on benthic algae as a basal resource. Dynamic models of the West Florida Shelf isotopic baseline were created using spatial data and satellite-derived water quality characteristics as predictors. Models were constructed using data from three fish species and tested on four other species to determine if the models could be extrapolated to new taxa. Both dynamic and static δ15N models had similar predictive capabilities, indicating a fairly stable δ15N baseline. The satellite-derived dynamic variables explained more variation in baseline δ13C than static spatial descriptors. Planktonic primary production can directly impact benthic food chains through phytoplankton deposition. A novel phytoplankton deposition detection method that combined water-column and benthic fluorometry with surficial sediment sampling was developed and assessed in a two-year study of the Caloosahatchee River estuary. Classifications based upon this detection method showed phytoplankton deposition dominated the upstream region and deposition was associated with reduced dissolved oxygen concentrations. Benthic algae dominated in downstream regions, particularly during low freshwater flow conditions when light absorption by colored dissolved organic matter was low. This same Caloosahatchee River estuary study was used to determine if zooplankton aggregate in regions with optimal basal resource availability. The isopod Edotia triloba was found to associate with chlorophyll peaks when freshwater velocity was constant. Chlorophyll peaks were offset downstream or upstream from isopod aggregations when freshwater flow was accelerating or decelerating, implying that phytoplankton and isopods have different response times to changes in flow. Temporal and spatial fluctuations in water quality and primary production introduce instability to aquatic consumers that primarily rely on one basal resource. The current global trends in eutrophication and increasing planktonic production are likely to be a liability for benthic consumers due to increased benthic hypoxia and light attenuation. The results of these studies indicate that both the location of consumers and their isotopic signatures can be impacted by factors, such as light attenuation, that control benthic and planktonic primary production.
255

Trophodynamics of the benthic food webs in the Chukchi and Beaufort Seas, Alaska

McTigue, Nathan David 11 March 2014 (has links)
The Chukchi and Beaufort Sea shelves host diverse and productive seafloor ecosystems important for carbon and nitrogen cycling for the Arctic Ocean. The benthic food web transfers energy from primary producers to high trophic level organisms (e.g., birds, fish, and mammals), which are important for cultural practices and subsistence hunting by Native Alaskans. This work focuses on the trophic ecology of arctic food webs through use of several different approaches. First, variation in the natural abundance of stable carbon and nitrogen isotopes facilitated the identification of trophic pathways and, subsequently, allowed the comparison of trophic guilds and food webs from the Chukchi and Beaufort Seas. Compared to water column and sedimentary organic matter end-members, second trophic level grazers and suspension feeders were conspicuously ¹³C-enriched throughout the Chukchi Sea, which supports the hypothesis that microbial degradation of organic matter occurred prior to metazoan assimilation. Second, food web recovery from disturbances caused by exploratory oil drilling at the seafloor that had occurred approximately 20 years prior were assessed in both the Chukchi and Beaufort Seas. Based on isotopic trophic niche overlap between organisms common to drilled and reference sites in the Chukchi and Beaufort Seas, the oil drilling sites had similar food web structure, indicating recovery from the activity associated with the drilling process. Third, photosynthetic pigment biomarkers were used to better understand the diagenetic process, specifically focusing on how both microbial and metazoan grazing pathways degrade organic matter in relation to seasonal sea ice retreat in the Chukchi Sea. The benthic macrofaunal and microbial food web caused rapid degradation of organic matter upon the initial pulse of microalgal food sources to the seafloor. These diagenetic pathways are linked to the ¹³C-enrichment of residual organic matter, which corresponds to the stable isotope values measured in the benthic macrofauna. Lastly, high-precision liquid chromatography and spectrophotometry were compared for estimating sedimentary pigments in the marine environment. Substantial differences in pheopigment (chlorophyll degradation products) concentrations were observed between the two techniques, suggesting the need for revisions to the monochromatic spectrophotometric equation that relates absorbance to pigment concentrations. One pheopigment, pheophorbide, was found to interfere with the accuracy of the spectrophotometric equation and caused the overestimation of pheopigments. / text
256

Trophic enrichment patterns of d 13C in organic matter of molluscan shell: Implications for reconstructing ancient environments and food webs

McKnight, Julie 01 June 2009 (has links)
Shell organic matrix proteins in fossils are valuable geochemical archives for studying ancient environments and food webs. Compound-specific studies of stable carbon isotope ratios offer particularly good resolution of trophic level of consumers and the identities of primary producers and can be used to detect diagenetic alteration of isotopic ratios. To interpret compound specific isotope data, however, controlled diet studies in the laboratory are needed to reveal trophic enrichment patterns of 13C in tissues and shell organic matter. This study examines the relationship between d 13C of 11 amino acids in diet, soft tissues, and shell organic matter in laboratory-cultured Strombus alatus, an herbivorous marine gastropod. The d 13C values of amino acids in this animal's foot and mantle tissues are consistently enriched in 13C relative to the diet. Phenylalanine (+1.8 ppm) and alanine (+3.8 ppm) showed the least fractionation between diet and tissues, while aspartic acid (+10.7 ppm) and glutamic acid (+14.6 ppm) showed the greatest enrichment. On average, nonessential amino acids exhibited greater enrichment than did essential amino acids (+7.1 ppm vs. + 4.1 ppm). Shell organic matter amino acids showed a very similar pattern, with aspartic and glutamic acids again showing the greatest enrichment (+7.2 ppm and +11.1 ppm respectively). Nonessential amino acids in shell (+4.9 ppm) were also more enriched than the essential amino acids (+3.5 ppm). Overall, the carbon isotopic compositions of amino acids in shell organic matrix appear to parallel those in animal tissue, validating the utility of employing this material as a surrogate for animal tissue in fossil samples. Interpreting trophic position information in consumers is difficult, however, as the variation in the magnitude of trophic enrichments for glutamic and aspartic acids between species, tissue types and diet is still poorly understood. As phenylalanine has the most consistent diet-consumer enrichments, the most suitable application for d 13C isotope analysis at this time is the reconstruction of base food sources.
257

Geochemical signatures in the coral Montastraea: Modern and mid-Holocene perspectives

Smith, Jennifer Mae 01 June 2006 (has links)
In the first phase of this project, four decades of monthly resolved geochemical variations from two massive heads of Montastraea were used to explore the reproducibility of the geochemical signal in these two corals from Looe Key, Florida. The coral d18O and d13C records of the two corals have statistically indistinguishable mean values, which is not the case for the coral Sr/Ca records implying that nonenvironmental factors are influencing coral Sr/Ca. Calibration equations relating coral geochemistry variations to environmental variations at Looe Key are different from previously published equations for Montastraea. These calibration differences are not related to growth-related kinetic effects, but may reflect variations in seawater chemistry in the coastal waters of the Florida Keys. Additional studies are needed to identify the causes of the observed geochemical variability. In the second phase of this study, fourteen decades of monthly resolved geochemical variations in another Montastraea coral from Looe Key, Florida were compared to records of sea-surface temperature (SST). Coral Sr/Ca and d18O variations have a weak relationship with variations in SST and skeletal extension rates; however, many events in the Sr/Ca and d18O records are coincident with anomalies in SST, growth, or precipitation. Strong coupling exists between Sr/Ca and d18O in both anomaly and mean annual perspectives, which reflects the combined influence of SST and growth related processes on the geochemical signal. Separating these impacts proved to be problematic due to modest agreements with each forcing variable. In the final phase of this study, geochemical records from three, mid-Holocene(~5 ka) fossil Montastraea corals from the Dry Tortugas, Florida were compared with geochemical records from modern Montastraea corals from the same region to investigate temporal changes in climate. Stable isotopic records show significant changes through time, which can be interpreted in terms of environmental variation; however, large inter-coral variability between modern specimens of Montastraea precludes meaningful assessment of Sr/Ca. The pattern and mean d18O values in the fossil corals reflects changes in both temperature and salinity are reminiscent of centennial-scale variability present in other records from this region.
258

No man's paradise : lead burden and diet reconstruction from human skeletal remains in a colonial cemetery from Antigua

2015 August 1900 (has links)
The primary focus of this thesis is to examine the relationship between diet, as reconstructed via stable isotope analysis, and bone lead levels, quantified by trace element analysis for individuals interred at the Royal Naval Hospital Cemetery (RNHC), A.D. 1793-1822, in Antigua, West Indies. Individuals of both African and European ancestries were recovered from this colonial-era cemetery, and samples from their remains were analyzed to determine stable carbon and nitrogen isotope values (as a proxy for diet), and bone lead levels. The data were then compared in order to elucidate any association among the variables. This investigation revealed that the relationship between diet and lead may have been affected by many variables including ancestry, status, agency, and duration of stay in the West Indies. However, from the results presented in this thesis, the strongest correlation between stable isotope signatures and bone lead levels is in the relationship between δ13Ccollagen and lead for individuals consuming a diet primarily consisting of C3 staple starches and C3 fed animals. A secondary focus of this thesis is to estimate the extent to which the individuals interred at the RNHC may have suffered from symptoms of lead poisoning. Through conversion of bone lead levels to blood lead levels, potential symptomatology may be estimated in order to determine the percentage of individuals from the population that may have experienced mild to severe lead poisoning. In this population, a majority of individuals had high enough blood lead levels that they may have suffered from a range of symptoms associated with exposure to lead, which is not inconsistent with historical assertions that lead poisoning was of considerable detriment to the health and well-being of individuals serving in the British military in the colonial Caribbean. This study provides further insight into the health and lifeways of lower-ranking naval personnel and enslaved labourers owned by the Navy in the late eighteenth and early nineteenth century West Indies.
259

Late Pleistocene-Early Holocene glacial dynamics, Asian palaeomonsoon variability and landscape change at Lake Shudu, Yunnan Province, southwestern China

Cook, Charlotte Govett January 2009 (has links)
A lack of well-distributed, high-resolution records of Late Quaternary Asian palaeomonsoon variability remains an outstanding issue for palaeoclimatologists, and is especially marked in remote regions such as the mountains of southwestern China (Wang et al., 2005). Characterising the nature, timing and magnitude of climate variability in southwestern China is essential for understanding the regional climate as a whole, and the potential social, economic and environmental impacts that may result from Asian monsoon system changes. The NERC-funded research presented in this thesis focuses on a high altitude lake sediment record obtained from Lake Shudu, Yunnan Province, China. The lake is located on the southeastern edge of the Tibetan Plateau. The primary aims of this research were to identify and examine key environmental and climatic shifts which occurred in southwestern China during the Late Pleistocene (Dali) - Early Holocene Period; to examine the possible drivers of these changes; and to compare the findings with other regional proxy records in order to better understand climate dynamics in southwestern China. These aims were chosen in order to test the hypothesis that Late Quaternary millennial to centennial scale climatic and environmental changes in southwestern China were driven by changes in solar insolation and / or glacial climate boundary conditions, characterised by stepwise increases in palaeomonsoon intensity. AMS 14C radiocarbon dates obtained from bulk sediment samples and pollen concentrations indicated that the seven metre core (06SD) that forms the focus of this research spans the last c. 22.6 ka cal. yr BP, making it one of the longest high-resolution Late Quaternary records available for southwestern China. 06SD was examined using a multi-proxy approach incorporating physical, organic and palaeoecological analyses. The record captures the shift from colder, drier Pleistocene (Dali) conditions to warmer, wetter Holocene conditions and is punctuated by two events. The first event, centred at c. 17.3 ka cal. yr BP, possibly represents a phase of warmer and / or wetter conditions in response to rising solar insolation during the deglacial period. The second event, commencing at c. 11.7 ka cal. yr BP, possibly denotes the Pleistocene - Holocene Boundary. Overall, the findings of this research support the view that during the Late Pleistocene, Asian summer monsoon strengthening was non-linear and driven by changes in glacial dynamics and / or solar insolation.
260

Trophic complexity of zooplankton–cyanobacteria interactions in the Baltic Sea : Insights from molecular diet analysis

Motwani, Nisha H. January 2015 (has links)
Blooms of nitrogen fixing cyanobacteria (NFC) occur in many freshwater and marine systems, including the Baltic Sea. By fixing dissolved nitrogen, they circumvent general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for non-diazotrophic primary producers and ultimately supporting secondary production. Elucidating trophic links between primary consumers and NFC is essential for understanding role of these blooms for secondary production. However, until recently, there was no reliable method to quantify individual prey species for zooplankter feeding in situ. The development of PCR-based methods to detect prey-specific DNA in the diet of consumers, including microscopic animals, allows identification and quantification of trophic linkages in the field. Using molecular diet analysis in combination with egg production measurements, biochemical markers of growth and condition; and stable isotope approach, we explored a possibility to determine (1) whether cyanobacteria are grazed and assimilated by mesozooplankters (Papers I and II), (2) which species/groups are particularly efficient consumers of cyanobacteria (Papers II and III), and (3) how feeding on cyanobacteria affects zooplankton growth and development (Paper I and III). Taken together, these laboratory and field observations, provided evidence that NFC contribute to feeding and reproduction of zooplankton during summer and create a favorable growth environment for the copepod nauplii (Paper I). The favorable growth conditions for juvenile copepods observed during NFC blooms were hypothesized to be mediated by picoplankton that take up bioavailable nitrogen exuded from cyanobacterial cells. This hypothesis found support in Paper II that provided quantitative estimates for the direct picocyanobacteria → mesozooplankton pathway, with highest weight-specific consumption observed in nauplii. Further, using field observations on zooplankton and phytoplankton development during a growth season in the northern Baltic proper, we found that NFC nitrogen is assimilated and transferred to zooplankton via both direct grazing and indirectly through grazing on small-sized phyto- and bacterioplankton (Paper III). Finally, these and other findings emphasizing the importance of NFC for Baltic Sea secondary production during growth season were synthesized to show that diazotrophic nitrogen enters food webs already at bloom initiation (Paper III) and is transferred via multiple pathways to pelagic and benthic food webs and, ultimately, to fish (Paper IV). / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Accepted.</p>

Page generated in 0.0369 seconds