• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 17
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 71
  • 17
  • 15
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Knowledge Discovery Through Probabilistic Models

Ristovski, Kosta January 2012 (has links)
Probabilistic models are dominant in many research areas. To learn those models we need to find a way to determine parameters of distributions over variables which are included in the model. The main focus of my research is related to continuous variables. Thus, Gaussian distribution over variables is the most dominant factor in all models used in this document. I have been working on different and important real-life problems such as Uncertainty of Neural Network Based Aerosol Retrieval, Regression Learning with Multiple Noise Oracles and Model Predictive Control (MPC) for Sepsis Treatment, Clustering Causes of Action in Federal Courts. These problems will be discussed in the following chapters. Aerosols, small particles emanating from natural and man-made sources, along with green house gases have been recognized as very important factors in ongoing climate changes. Accurate estimation of aerosol composition and concentration is one of the main challenges in current climate research. Algorithm for prediction of aerosol designed by domain scientists does not provide quantitative information about aerosol estimation uncertainty. We deployed algorithm which uses neural networks to determine both uncertainty and the estimation of the aerosol. The uncertainty estimator has been built under an assumption that uncertainty is a function of variables used for aerosol prediction. Also, the uncertainty of predictions has been computed as the variance of the conditional distribution of targets given the input data. In regression learning, it is often difficult to obtain the true values of the label variables, while multiple sources of noisy estimates of lower quality are readily available. To address this problem, I propose a new Bayesian approach that learns a regression model from a data with noisy labels which are provided by multiple oracles. This method gives closed form solution for model parameters and it is applicable to both linear and nonlinear regression problems. Sepsis is a medical condition characterized as a systemic inflammatory response to an infection. High mortality rate (30-35%) of septic patients is usually caused by inadequate treatment. Thus, development of tools that can aid clinicians in designing optimal strategies for inflammation treatments is of utmost importance. Towards this objective I developed a data driven approach for therapy optimization where a predictive model for patients' behavior is learned directly from historical data. As such, the predictive model is incorporated into a model predictive control optimization algorithm to find optimal therapy, which will lead the patient to a healthy state. A more careful targeting of specific therapeutic strategies to more biologically homogeneous groups of patients is essential to developing effective sepsis treatment. We propose a kernel-based approach to characterize dynamics of inflammatory response in a heterogeneous population of septic patients. The method utilizes Linear State Space Control (LSSC) models to take into account dynamics of inflammatory response over time as well as the effect of therapy applied to the patient. We use a similarity measure defined on kernels of LSSC models to find homogeneous groups of patients. In addition to clustering of dynamics of inflammatory response we also explored a clustering of civil litigation from its inception by examining the content of civil complaints. We utilize spectral cluster analysis on a newly compiled federal district court dataset of causes of action in complaints to illustrate the relationship of legal claims to one another, the broader composition of lawsuits in trial courts, and the breadth of pleading in individual complaints. Our results shed light not only on the networks of legal theories in civil litigation but also on how lawsuits are classified and the strategies that plaintiffs and their attorneys employ when commencing litigation. / Computer and Information Science
2

Point process modeling and estimation: advances in the analysis of dynamic neural spiking data

Deng, Xinyi 12 August 2016 (has links)
A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in population spiking data. Lastly, we proposed a general three-step paradigm that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas, which is a step towards closed-loop therapies for psychological diseases using real-time neural stimulation. These methods are suitable for real-time implementation for content-based feedback experiments.
3

Towards smooth particle filters for likelihood estimation with multivariate latent variables

Lee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change. When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers. Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous. In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion.
4

Towards smooth particle filters for likelihood estimation with multivariate latent variables

Lee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change. When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers. Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous. In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion.
5

Towards smooth particle filters for likelihood estimation with multivariate latent variables

Lee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change. When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers. Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous. In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion. / Science, Faculty of / Computer Science, Department of / Graduate
6

Extending Bayesian network models for mining and classification of glaucoma

Ceccon, Stefano January 2013 (has links)
Glaucoma is a degenerative disease that damages the nerve fiber layer in the retina of the eye. Its mechanisms are not fully known and there is no fully-effective strategy to prevent visual impairment and blindness. However, if treatment is carried out at an early stage, it is possible to slow glaucomatous progression and improve the quality of life of sufferers. Despite the great amount of heterogeneous data that has become available for monitoring glaucoma, the performance of tests for early diagnosis are still insufficient, due to the complexity of disease progression and the diffculties in obtaining sufficient measurements. This research aims to assess and extend Bayesian Network (BN) models to investigate the nature of the disease and its progression, as well as improve early diagnosis performance. The exibility of BNs and their ability to integrate with clinician expertise make them a suitable tool to effectively exploit the available data. After presenting the problem, a series of BN models for cross-sectional data classification and integration are assessed; novel techniques are then proposed for classification and modelling of glaucoma progression. The results are validated against literature, direct expert knowledge and other Artificial Intelligence techniques, indicating that BNs and their proposed extensions improve glaucoma diagnosis performance and enable new insights into the disease process.
7

Hystereze nezaměstnanosti v České republice / Unemployment hysteresis in the Czech Republic

Bechný, Jakub January 2016 (has links)
This thesis presents an empirical analysis of the unemployment hysteresis in the Czech Republic on quarterly data from 1999 to 2015. The hysteresis is modelled by allowing for: (i) impact of the cyclical unemployment on the NAIRU; (ii) impact of the long-term un- employment on the NAIRU. Models are written in state space form and estimated using Bayesian approach. The main contributions of this thesis are as follows. The results pro- vide robust evidence in favour of the hysteresis in the Czech Republic, but precise size of the hysteresis effect is surrounded by relatively large uncertainty. Posterior mean estimates of key parameters indicate that in response to increase in the cyclical unemployment of 1 percentage point, the NAIRU increases by 0.15 percentage points. The first specification of the hysteresis implies that the hysteresis induced changes in the Czech Republic's NAIRU of at most 1 percentage point. The hysteresis specified as impact of the long-term unemploy- ment on the NAIRU then implies even weaker effect, inducing changes in the NAIRU of at most 0.6 percentage points. The models are estimated jointly with the hybrid Phillips curve identified using survey forecasts as proxies for the expectations. Estimate of the expecta- tions' parameter 0.65 indicates the forward-looking nature of the Czech...
8

Gaussian Process Kernels for Cross-Spectrum Analysis in Electrophysiological Time Series

Ulrich, Kyle Richard January 2016 (has links)
<p>Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.</p> / Dissertation
9

Contributions to statistical analysis methods for neural spiking activity

Tao, Long 27 November 2018 (has links)
With the technical advances in neuroscience experiments in the past few decades, we have seen a massive expansion in our ability to record neural activity. These advances enable neuroscientists to analyze more complex neural coding and communication properties, and at the same time, raise new challenges for analyzing neural spiking data, which keeps growing in scale, dimension, and complexity. This thesis proposes several new statistical methods that advance statistical analysis approaches for neural spiking data, including sequential Monte Carlo (SMC) methods for efficient estimation of neural dynamics from membrane potential threshold crossings, state-space models using multimodal observation processes, and goodness-of-fit analysis methods for neural marked point process models. In a first project, we derive a set of iterative formulas that enable us to simulate trajectories from stochastic, dynamic neural spiking models that are consistent with a set of spike time observations. We develop a SMC method to simultaneously estimate the parameters of the model and the unobserved dynamic variables from spike train data. We investigate the performance of this approach on a leaky integrate-and-fire model. In another project, we define a semi-latent state-space model to estimate information related to the phenomenon of hippocampal replay. Replay is a recently discovered phenomenon where patterns of hippocampal spiking activity that typically occur during exploration of an environment are reactivated when an animal is at rest. This reactivation is accompanied by high frequency oscillations in hippocampal local field potentials. However, methods to define replay mathematically remain undeveloped. In this project, we construct a novel state-space model that enables us to identify whether replay is occurring, and if so to estimate the movement trajectories consistent with the observed neural activity, and to categorize the content of each event. The state-space model integrates information from the spiking activity from the hippocampal population, the rhythms in the local field potential, and the rat's movement behavior. Finally, we develop a new, general time-rescaling theorem for marked point processes, and use this to develop a general goodness-of-fit framework for neural population spiking models. We investigate this approach through simulation and a real data application.
10

Forecast Comparison of Models Based on SARIMA and the Kalman Filter for Inflation

Nikolaisen Sävås, Fredrik January 2013 (has links)
Inflation is one of the most important macroeconomic variables. It is vital that policy makers receive accurate forecasts of inflation so that they can adjust their monetary policy to attain stability in the economy which has been shown to lead to economic growth. The purpose of this study is to model inflation and evaluate if applying the Kalman filter to SARIMA models lead to higher forecast accuracy compared to just using the SARIMA model. The Box-Jenkins approach to SARIMA modelling is used to obtain well-fitted SARIMA models and then to use a subset of observations to estimate a SARIMA model on which the Kalman filter is applied for the rest of the observations. These models are identified and then estimated with the use of monthly inflation for Luxembourg, Mexico, Portugal and Switzerland with the target to use them for forecasting. The accuracy of the forecasts are then evaluated with the error measures mean squared error (MSE), mean average deviation (MAD), mean average percentage error (MAPE) and the statistic Theil's U. For all countries these measures indicate that the Kalman filtered model yield more accurate forecasts. The significance of these differences are then evaluated with the Diebold-Mariano test for which only the difference in forecast accuracy of Swiss inflation is proven significant. Thus, applying the Kalman filter to SARIMA models with the target to obtain forecasts of monthly inflation seem to lead to higher or at least not lower predictive accuracy for the monthly inflation of these countries.

Page generated in 0.0536 seconds