• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 17
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 65
  • 49
  • 47
  • 44
  • 34
  • 34
  • 21
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Introducing New Energy Dissipation Mechanisms for Steel Fiber Reinforcement in Ultra-High Performance Concrete

Scott, Dylan Andrew 08 December 2017 (has links)
By adding annealed plain carbon steel fibers and stainless steel fibers into Ultra-High Performance Concrete (UHPC), we have increased UHPC’s toughness through optimized thermal processing and alloy selection of steel fiber reinforcements. Currently, steel fiber reinforcements used in UHPCs are extremely brittle and have limited energy dissipation mainly through debonding due to matrix crumbling with some pullout. Implementing optimized heat treatments and selecting proper alternative alloys can drastically improve the post-yield carrying capacity of UHPCs for static and dynamic applications through plastic deformations, phase transformations, and fiber pullout. By using a phase transformable stainless steel, the ultimate flexural strength increased from 32.0 MPa to 42.5 MPa (33%) and decreased the post-impact or residual projectile velocity measurements an average of 31.5 m/s for 2.54 cm and 5.08 cm thick dynamic impact panels.
2

Performance of Steel Fiber Reinforced and Conventionally Reinforced Post-Tensioned Flat Plates

Ojo, Taye Oluwafemi 16 September 2021 (has links)
With the increasing need for commercial and residential buildings, post-tensioned (PT) flat plates have become a preferred choice for floor systems, because of the numerous advantages over non-prestressed slabs such as better efficiency, reduced slab self-weight, as well as crack and deflection control. To improve the competitive advantage of PT flat plates through improved economy and performance, a study was undertaken. This study investigated the performance and behavior of three one-third scale models of a nine-panel two-way unbonded post-tensioned flat plate. One of the slabs had conventional reinforcement with uniform-banded tendon layout, another had conventional reinforcement with banded-banded tendon layout while the last had banded-banded tendon layout reinforced with steel fiber. The specimens were loaded to service limit state, factored load and then to failure, using a whiffle tree loading system that approximated a uniformly distributed load. Experimental results were compared to analytical results from finite element and yield line analysis. The performance of the banded-banded specimens was very similar to the uniform-banded specimens at service and factored load. The failure loads for all specimens were considerably higher than the design factored load of 197 psf. Steel fiber was able to replace conventional reinforcement and the performance of the specimens with steel fibers was satisfactory, and comparable to their corresponding conventional reinforced specimens at service and factored limit state. Analytical results from finite element analysis showed a fairly reasonable agreement with experimental results. The results from the experimental tests showed that the use of steel fiber in post-tensioned flat plates is a viable and safe technology that will lead to improved performance and economy. The experimental results seem to indicate that the requirement of conventional reinforcement may be unnecessary in the negative moment regions and also in the positive moment region if the tensile stress is not more than 3√(f'c ) in this region. ACI 318-19 code design recommendations were provided for design of banded-banded PT system and SFRC post-tensioned flat plate. Additional testing should be conducted before SFRC post-tensioned flat plates are incorporated in the ACI 318 code (ACI 318, 2019) with a maximum allowable tensile stress of 6√(f'c). / Doctor of Philosophy / Over the years, the use of post-tensioned flat plates as flooring system has increased and became popular in residential and commercial buildings. Post-tensioned flat plates are a type of concrete structural slabs typically used for flooring in high-rise building because of the numerous advantages over non-prestressed slabs such as better efficiency, reduced slab self-weight, as well as smaller crack and deflection. This type of slab typically consists of high strength steel strands called tendons, which are stretched to compress the concrete slab in both directions. To improve the performance of this type of slabs a research study was performed. This study investigated the performance and behavior of three one-third scale models of a nine-panel two-way post-tensioned flat plate. One of the slabs was strengthened with conventional steel bars and the tendon layout was uniform-banded tendon, another had conventional steel bar with banded-banded tendon layout while the last had banded-banded tendon layout reinforced with steel fiber. Actual load that will act on the slab when in use was applied and then this load was increased by a factor as specified in the building code, before loading the slab to the point where it cannot carry any more load. Results from the load test were compared to results obtain from analytical software package. The performance of the specimens that had banded-banded tendon layout was very similar to the specimens that had uniform-banded tendon layout, at actual operational load when in use. The failure loads for all specimens were considerably higher than the load they were designed for. The results suggest that steel fiber is a good alternative to conventional steel bars. The results from the load tests suggest that steel fiber can be used to strengthen post-tensioned flat plates which will lead to better performance and reduced cost.
3

Ověření skutečných fyzikálně-mechanických parametrů kompozitního materiálu / Verification of actual physical-mechanical parameters of composite material

Jablonská, Markéta January 2016 (has links)
Diploma thesis deals with composite materiál and it is dedicated to steel fiber concreat. The thesis focuses on verification of mechanical parameters of the steel fiber concrete. Especially on the compressive (tensile) strength at first cracking and the compressive strength in cracked state. Testing was conducted on concrete different tensile with 30 kg on m3 steel fibers KrampeHarex DE 50/1,0 N. The thesis is divided into theoretical and experimental part.
4

Reforço de pilares de concreto armado por meio de encamisamento com concreto de alto desempenho. / Strengthening of reinforced concrete columns by means of high-performance concrete jacketing

Takeuti, Adilson Roberto 22 March 1999 (has links)
Este estudo apresenta os resultados de uma investigação experimental constituída de três séries de ensaio, cada uma envolvendo dois modelos: um pilar básico de concreto armado, representando o pilar a ser reforçado e um pilar reforçado por camisa de concreto de alto desempenho com várias características. Todos os pilares básicos tinham a seção quadrada de 150 mm x 150 mm com altura de 1200 mm. Eles foram produzidos com concreto de 18 MPa de resistência nominal à compressão, armadura longitudinal com quatro barras de 8 mm de diâmetro e armadura transversal com estribos de 6.3mm de diâmetro com espaçamento de 90 mm. Os parâmetros que foram variados nas camisas de reforço foram: a) dois valores de espessura (tj); b) três valores de taxa de armadura transversal (*sw) utilizando telas soldadas ou armadura de estribos; c) adição de fibras curtas de aço. A resistência nominal à compressão do concreto utilizado em todas as camisas foi de 65 MPa, caracterizando-se portanto um concreto de alta resistência. Os pilares foram submetidos à compressão axial por meio de uma máquina hidráulica servo-controlada. Os ensaios foram realizados com controle de deslocamento, adotando-se uma velocidade de 0.005mm/s para o deslocamento do pistão. A força aplicada e as deformações continuaram sendo medidas após o alcance da força de ruína, para se avaliar o comportamento pós-pico, até se atingir uma força residual de cerca de 50% da força de pico. Modelos de cálculo da resistência última dos pilares reforçados foram analisados. Também foram testados modelos de confinamento e ductilidade para os elementos reforçados. / This study presents the results of an experimental investigation in three series of tests, each one involving two models: a basic reinforced concrete column, which represents the column to ge strengthened, and an identical basic column strengthned by a high-performance concrete jacket with variable characteristics. All the basic columns had a 150 mm x 150 mm square section and a 1,200 mm length. They were made of a 18 MPa nominal strength concrete and reinforced with four 8 mm diameter steel bars and 6.3mm diameter stirrups each. The jacket characteristics varied as follows: a) two thickness values(tj); b) three values of transverse reinforcement ratio (*sw) using welded wire steel meshes or ordinary stirrups; c) addition of short steel fibers. The nominal concrete compressive strength used in all the jackets was 65 MPa, therefore a high-strength concrete. The columns were subjected to monotonic axial compression by means of a servo-controlled hydraulic machine. A displacement increasing rate of 0.005 mm/sec at the top of the column was adopted. Load and strain measurements continued after the ultimate load to evaluate the post-peak behavior, up to a residual load-bearing capacity of about 50% of the peak load. Several calculation hypotheses were tested to evaluate the ultime strength of the rehabilitated columns. Also confinement mechanisms and ductility of the members were analyzed.
5

Contribuição para a aplicação do concreto reforçado com fibras de aço em elementos de superfície restringidos. / Contribution for use of steel fiber reinforced concrete in restrained surface elements.

Nunes, Nelson Lúcio 24 March 2006 (has links)
Este trabalho apresenta um estudo para a previsão de comportamento quanto à fissuração e seu controle pelo uso das fibras de aço, em elementos de superfície de concreto restringidos, ou seja, submetidos às tensões de tração induzidas pela retração restringida. Neste estudo, foi desenvolvido um método analítico para calcular o consumo de um determinado tipo de fibra de aço em função do potencial de retração da matriz de concreto e da máxima abertura de fissura, determinada em função de parâmetros de durabilidade e aceitabilidade sensorial. Posteriormente, foram realizados ensaios para caracterização do potencial de fissuração de matrizes de concreto utilizadas em obras de elementos de superfície, onde testou-se um método de estimativa das tensões induzidas por retração restringida no concreto, no momento da primeira fissura. Na etapa final do trabalho, foi realizado um programa experimental, com a construção de pistas de concreto reforçado com fibras de aço (CRFA), com consumos de fibras de 10 kg/m3, 30 kg/m3 e 60 kg/m3, construídas sobre bases com duas condições de restrição: superfície desempenada e superfície jateada com exposição dos agregados. A fissuração destas pistas, nas primeiras idades, foi monitorada através da medida da abertura e do comprimento das fissuras. Com os resultados desta etapa experimental, foi realizada uma retroanálise do método onde concluiu-se que a consideração de valores característicos na previsão da resistência à tração do concreto era um ajuste necessário e coerente com a observação prática. Com o ajuste, os resultados experimentais de abertura de fissura ficaram dentro da faixa de previsibilidade do método, considerando um intervalo de confiança de 90%. Com o desenvolvimento deste método, buscou-se contribuir para a aplicação do CRFA no controle da fissuração por retração restringida de elementos de superfície, ampliando a fronteira do conhecimento no aspecto da escolha e dosagem da fibra para um determinado desempenho esperado quanto à fissuração. / This work presents a study for crack prediction and use of steel fibers to crack control in concrete surface elements submitted to tension stress induced by restrained shrinkage. In this study, a method was developed where a certain steel fiber type could be quantified, as function of concrete matrix shrinkage potential and maximum crack width, determined from human sensorial and durability criteria. Afterwards, an experimental program was done in order to characterize the crack potential of concrete matrices commonly used in surface elements. In this program, a method to predict tension stress induced by restrained shrinkage, at first crack moment, was tested. In the final step of this work, another experimental program was done, where steel fiber reinforced concrete (SFRC) tracks were built, with fiber contents of 10 kg/m3, 30 kg/m3 and 60 kg/m3, over substrates with two restriction conditions: smooth surface and rough surface, with exposition of surface aggregates. Lengths and widths of the early age shrinkage cracks in the tracks were monitored. The results obtained in this program were useful to analyze the method, adjusting it with the consideration of characteristic values in prediction of tension strength. With this adjust, experimental crack width results were more compatible with 90% confidence interval for crack width values predicted by the method. With this study, the goal was the contribution to use SFRC in the control of restrained shrinkage cracks in surface elements, amplifying the knowledge border in the aspect of fiber selection and proportioning, for a determined and expected performance in terms of crack width.
6

Finite Element Simulation Of Crack Propagation For Steel Fiber Reinforced Concrete

Ozenc, Kaan 01 August 2009 (has links) (PDF)
Steel fibers or fibers in general are utilized in concrete to control the tensile cracking and to increase its toughness. In literature, the effects of fiber geometry, mechanical properties, and volume on the properties of fiber reinforced concrete have often been experimentally investigated by numerous studies. Those experiments have shown that useful improvements in the mechanical behavior of brittle concrete are achieved by incorporating steel fibers. This study proposes a simulation platform to determine the influence of fibers on crack propagation and fracture behavior of fiber reinforced concrete. For this purpose, a finite element (FE) simulation tool is developed for the fracture process of fiber reinforced concrete beam specimens subjected to flexural bending test. Within this context, the objective of this study is twofold. The first one is to investigate the effects of finite element mesh size and element type on stress intensity factor (SIF) calculation through finite element analysis. The second objective is to develop a simulation of the fracture process of fiber reinforced concrete beam specimens. The properties of the materials, obtained from literature, and the numerical simulation procedure, will be explained. The effect of fibers on SIF is included by unidirectional elements with nonlinear generalized force-deflection capability. Distributions and orientation of fibers and possibility of anchorage failure are also added to simulation. As a result of this study it was observed that with the adopted simulation tool, the load-deflection relation obtained by experimental studies is predicted reasonably.
7

Seismic Strengthening Of Masonry Infilled R/c Frames With Steel Fiber Reinforcement

Sevil, Tugce 01 February 2010 (has links) (PDF)
Seismic resistance of many buildings in Turkey is insufficient. Strengthening using R/C infills requires huge construction work. Feasible, easy strengthening techniques are being studied in Structural Mechanics Laboratory of METU. In this project, it was aimed to develop an economical strengthening method. This method is based on addition of steel fibers and/or PP fibers in mortar and application of mortar on masonry wall. Project was sponsored by the Scientific and Technical Research Council of Turkey (T&Uuml / BiTAK). Physical properties of cement, aggregate, and mortar used in tests were determined by material tests. After performing flexural strength and compressive strength tests, optimum mortar was obtained. R/C frames strengthened by applying the mortar to brick infilled walls were tested under reversed cyclic loads. Before the frame tests, two series of panel tests were performed to correctly model strengthened infill walls and to gather information about behavior of walls under load. Totally 10 frame tests were done. 4 tests were done as reference tests, and other 6 were done as strengthened frame tests. In the analytical part of study, the plastered hollow brick infill wall strengthened by FRM was modeled as two separate compression struts. First strut was used to model the plastered hollow brick infill wall. Second strut was used to model the FRM. This technique is effective in improving seismic behavior by increasing strength, initial stiffness, energy dissipation, and ductility. Moreover, the method provides strengthening of the buildings without evacuating the structure.
8

Um modelo constitutivo para o concreto reforçado com fibras de aço via Teoria da Homogeneização / Constitutive model for steel fiber reinforced concrete based on the homogenization theory

Pasa Dutra, Vanessa Fátima January 2012 (has links)
O concreto reforçado com fibras de aço (CRFA) é um material compósito formado por uma matriz cimentícia e por uma certa quantidade de fibras aleatoriamente dispersas. Buscou-se neste estudo “construir” um modelo constitutivo capaz de representar o comportamento do CRFA e cuja formulação está fundamentada na Teoria da Homogeneização, no Método dos Elementos Finitos (MEF), como também em observações experimentais disponíveis na literatura. Na primeira etapa do trabalho foram desenvolvidos estudos visando a análise do comportamento elástico e viscoelástico do CRFA. Inicialmente, o comportamento elástico linear foi investigado através da aplicação do esquema de homogeneização de Mori-Tanaka, o qual é baseado nos resultados estabelecidos por Eshelby (1957). A precisão dos resultados obtidos pela abordagem analítica foi verificada pela comparação com a solução via MEF, bem como com os resultados experimentais disponíveis. As estimativas micromecânicas das propriedades elásticas efetivas se mostraram coerentes àquelas obtidas através de análise numérica de um volume elementar representativo (VER) do material, modelado como um meio heterogêneo, como também, aos dados experimentais. Posteriormente, a formulação do comportamento viscoelástico sem envelhecimento foi obtida fazendo-se uso da resposta em elasticidade e do Princípio da Correspondência Elástica-Viscoelástica. Os resultados obtidos foram comparados aos dados experimentais e a modelos analíticos disponíveis. Na segunda etapa do trabalho, as propriedades de resistência do CRFA foram investigadas empregando-se a abordagem estática da análise limite combinada à teoria da homogeneização. O critério de resistência macroscópico para o CRFA foi teoricamente obtido a partir do conhecimento da resistência dos seus constituintes, ou seja, da matriz de concreto e das fibras. Adotando-se o critério de ruptura de Drucker-Prager para a matriz de concreto e considerando-se distribuição espacial isotrópica das fibras através de um modelo aproximado, um critério aproximado para a estimativa das propriedades de resistência homogeneizadas foi formulado. A formulação do critério foi complementada através da consideração de um critério de cut-off em tração e das propriedades limitadas de resistência da interface. Os resultados analíticos foram comparados a resultados experimentais e àqueles obtidos na resolução numérica do problema de análise limite formulado sobre o VER do CRFA, através de uma ferramenta numérica baseada no MEF no contexto da plasticidade. A comparação permitiu avaliar a influência da anisotropia do modelo aproximado empregado, como também da geometria real das fibras sobre a resistência do compósito. / Steel fiber reinforced concrete (SFRC) is a composite material formed by a cement matrix and a certain amount of randomly dispersed fibers. The main objective of the present work is the formulation of a comprehensive constitutive model for SFRC behavior that relies upon homogenization theory, finite element method (FEM) and taking advantage of experimental data available in the literature as well. The first part of the work is devoted to the assessment of elastic and viscoelastic behavior of SFRC. The study starts with the analysis of linear elastic behavior by implementation of a Mori-Tanaka homogenization scheme, which is based on the Eshelby equivalent inclusion approach. It was found that the micromechanical predictions for the overall stiffness proved to be considerably close to the experimental data, as well as to the finite element solutions obtained from numerical analysis of a representative elementary volume (REV) of SFRC (modeled as a randomly heterogeneous medium). Subsequently, the formulation of the nonaging viscoelastic behavior is carried out by making use of results from Elasticity and the Elastic-Viscoelastic Correspondence Principle. The results are compared to available experimental data and analytical models. The second part of the work focuses on the assessment of macroscopic strength properties of fiber reinforced concrete (FRC). Combining the static approach of limit analysis and the homogenization theory, the macroscopic strength criterion for SFRC was theoretically obtained from the knowledge of the strength properties of the individual constituents (concrete matrix and fibers). Adopting a Drucker-Prager failure condition for the concrete matrix and adopting a simplified geometrical model for fiber orientations and length, an approximate criterion was formulated for the overall strength properties. This formulation was complemented by considering a tensile cut-off condition for the concrete and limited strength properties for the interface. The analytical results were compared to experimental data and also to results obtained from a numeric resolution of the problem of limit analysis stated on the REV the material by means of a specifically devised Finite Element numerical tool in the plasticity context. The comparison allowed investigating the influence of the anisotropy of the employed approximate model, as well as the real fiber morphology on the composite strength properties.
9

Um modelo constitutivo para o concreto reforçado com fibras de aço via Teoria da Homogeneização / Constitutive model for steel fiber reinforced concrete based on the homogenization theory

Pasa Dutra, Vanessa Fátima January 2012 (has links)
O concreto reforçado com fibras de aço (CRFA) é um material compósito formado por uma matriz cimentícia e por uma certa quantidade de fibras aleatoriamente dispersas. Buscou-se neste estudo “construir” um modelo constitutivo capaz de representar o comportamento do CRFA e cuja formulação está fundamentada na Teoria da Homogeneização, no Método dos Elementos Finitos (MEF), como também em observações experimentais disponíveis na literatura. Na primeira etapa do trabalho foram desenvolvidos estudos visando a análise do comportamento elástico e viscoelástico do CRFA. Inicialmente, o comportamento elástico linear foi investigado através da aplicação do esquema de homogeneização de Mori-Tanaka, o qual é baseado nos resultados estabelecidos por Eshelby (1957). A precisão dos resultados obtidos pela abordagem analítica foi verificada pela comparação com a solução via MEF, bem como com os resultados experimentais disponíveis. As estimativas micromecânicas das propriedades elásticas efetivas se mostraram coerentes àquelas obtidas através de análise numérica de um volume elementar representativo (VER) do material, modelado como um meio heterogêneo, como também, aos dados experimentais. Posteriormente, a formulação do comportamento viscoelástico sem envelhecimento foi obtida fazendo-se uso da resposta em elasticidade e do Princípio da Correspondência Elástica-Viscoelástica. Os resultados obtidos foram comparados aos dados experimentais e a modelos analíticos disponíveis. Na segunda etapa do trabalho, as propriedades de resistência do CRFA foram investigadas empregando-se a abordagem estática da análise limite combinada à teoria da homogeneização. O critério de resistência macroscópico para o CRFA foi teoricamente obtido a partir do conhecimento da resistência dos seus constituintes, ou seja, da matriz de concreto e das fibras. Adotando-se o critério de ruptura de Drucker-Prager para a matriz de concreto e considerando-se distribuição espacial isotrópica das fibras através de um modelo aproximado, um critério aproximado para a estimativa das propriedades de resistência homogeneizadas foi formulado. A formulação do critério foi complementada através da consideração de um critério de cut-off em tração e das propriedades limitadas de resistência da interface. Os resultados analíticos foram comparados a resultados experimentais e àqueles obtidos na resolução numérica do problema de análise limite formulado sobre o VER do CRFA, através de uma ferramenta numérica baseada no MEF no contexto da plasticidade. A comparação permitiu avaliar a influência da anisotropia do modelo aproximado empregado, como também da geometria real das fibras sobre a resistência do compósito. / Steel fiber reinforced concrete (SFRC) is a composite material formed by a cement matrix and a certain amount of randomly dispersed fibers. The main objective of the present work is the formulation of a comprehensive constitutive model for SFRC behavior that relies upon homogenization theory, finite element method (FEM) and taking advantage of experimental data available in the literature as well. The first part of the work is devoted to the assessment of elastic and viscoelastic behavior of SFRC. The study starts with the analysis of linear elastic behavior by implementation of a Mori-Tanaka homogenization scheme, which is based on the Eshelby equivalent inclusion approach. It was found that the micromechanical predictions for the overall stiffness proved to be considerably close to the experimental data, as well as to the finite element solutions obtained from numerical analysis of a representative elementary volume (REV) of SFRC (modeled as a randomly heterogeneous medium). Subsequently, the formulation of the nonaging viscoelastic behavior is carried out by making use of results from Elasticity and the Elastic-Viscoelastic Correspondence Principle. The results are compared to available experimental data and analytical models. The second part of the work focuses on the assessment of macroscopic strength properties of fiber reinforced concrete (FRC). Combining the static approach of limit analysis and the homogenization theory, the macroscopic strength criterion for SFRC was theoretically obtained from the knowledge of the strength properties of the individual constituents (concrete matrix and fibers). Adopting a Drucker-Prager failure condition for the concrete matrix and adopting a simplified geometrical model for fiber orientations and length, an approximate criterion was formulated for the overall strength properties. This formulation was complemented by considering a tensile cut-off condition for the concrete and limited strength properties for the interface. The analytical results were compared to experimental data and also to results obtained from a numeric resolution of the problem of limit analysis stated on the REV the material by means of a specifically devised Finite Element numerical tool in the plasticity context. The comparison allowed investigating the influence of the anisotropy of the employed approximate model, as well as the real fiber morphology on the composite strength properties.
10

Reforço de pilares de concreto armado por meio de encamisamento com concreto de alto desempenho. / Strengthening of reinforced concrete columns by means of high-performance concrete jacketing

Adilson Roberto Takeuti 22 March 1999 (has links)
Este estudo apresenta os resultados de uma investigação experimental constituída de três séries de ensaio, cada uma envolvendo dois modelos: um pilar básico de concreto armado, representando o pilar a ser reforçado e um pilar reforçado por camisa de concreto de alto desempenho com várias características. Todos os pilares básicos tinham a seção quadrada de 150 mm x 150 mm com altura de 1200 mm. Eles foram produzidos com concreto de 18 MPa de resistência nominal à compressão, armadura longitudinal com quatro barras de 8 mm de diâmetro e armadura transversal com estribos de 6.3mm de diâmetro com espaçamento de 90 mm. Os parâmetros que foram variados nas camisas de reforço foram: a) dois valores de espessura (tj); b) três valores de taxa de armadura transversal (*sw) utilizando telas soldadas ou armadura de estribos; c) adição de fibras curtas de aço. A resistência nominal à compressão do concreto utilizado em todas as camisas foi de 65 MPa, caracterizando-se portanto um concreto de alta resistência. Os pilares foram submetidos à compressão axial por meio de uma máquina hidráulica servo-controlada. Os ensaios foram realizados com controle de deslocamento, adotando-se uma velocidade de 0.005mm/s para o deslocamento do pistão. A força aplicada e as deformações continuaram sendo medidas após o alcance da força de ruína, para se avaliar o comportamento pós-pico, até se atingir uma força residual de cerca de 50% da força de pico. Modelos de cálculo da resistência última dos pilares reforçados foram analisados. Também foram testados modelos de confinamento e ductilidade para os elementos reforçados. / This study presents the results of an experimental investigation in three series of tests, each one involving two models: a basic reinforced concrete column, which represents the column to ge strengthened, and an identical basic column strengthned by a high-performance concrete jacket with variable characteristics. All the basic columns had a 150 mm x 150 mm square section and a 1,200 mm length. They were made of a 18 MPa nominal strength concrete and reinforced with four 8 mm diameter steel bars and 6.3mm diameter stirrups each. The jacket characteristics varied as follows: a) two thickness values(tj); b) three values of transverse reinforcement ratio (*sw) using welded wire steel meshes or ordinary stirrups; c) addition of short steel fibers. The nominal concrete compressive strength used in all the jackets was 65 MPa, therefore a high-strength concrete. The columns were subjected to monotonic axial compression by means of a servo-controlled hydraulic machine. A displacement increasing rate of 0.005 mm/sec at the top of the column was adopted. Load and strain measurements continued after the ultimate load to evaluate the post-peak behavior, up to a residual load-bearing capacity of about 50% of the peak load. Several calculation hypotheses were tested to evaluate the ultime strength of the rehabilitated columns. Also confinement mechanisms and ductility of the members were analyzed.

Page generated in 0.0626 seconds