Spelling suggestions: "subject:"[een] SWARM INTELLIGENCE"" "subject:"[enn] SWARM INTELLIGENCE""
131 |
Inteligência coletiva e gestão do conhecimento: uma aplicação na rede social Facebook / Collective intelligence and knowledge management: an application in Facebook social networkPadilha, Matheus Alberto Oliveira 22 August 2016 (has links)
As redes sociais se apoiam em conceitos como colaboração, cooperação, replicação, fluxo, agilidade, interação, engajamento, e têm por objetivo o contínuo compartilhamento e recompartilhamento de informações em prol da permanente interação social. O Facebook, a maior rede social do mundo, atingia, em maio de 2016, a marca de 1,09 bilhões de usuários ativos diariamente, drenando 161,7 milhões de horas por dia de atenção dos seus usuários para o website. São compartilhadas por esses usuários 4,75 bilhões de unidades de conteúdo diariamente. A pesquisa apresentada nesta dissertação tem por objetivo investigar a gestão de conhecimento e a inteligência coletiva, a partir da introdução de mecanismos que visam a possibilite aos usuários gerenciar e organizar as informações correntes em feeds de grupos dos quais participam, transformando o Facebook em um dispositivo de gestão de informação e conhecimento coletivos, além da mera interação e comunicação entre os usuários. Adotando a metodologia design science research pretendeu-se incutir no artefato computacional desenvolvido os "genes" da inteligência coletiva, conforme apresentados na literatura, para que tal inteligência pudesse ser gerenciada e utilizada para criar ainda mais conhecimento e inteligência para e a partir da interação do grupo. A principal contribuição teórica da pesquisa está em se discutir gestão do conhecimento e inteligência coletiva de maneira complementar e integrada, evidenciando a forma como esforços para a obtenção de uma contribuem para também alavancar a outra. / Social networks rely on concepts such as collaboration, cooperation, replication, flow, speed, interaction, engagement, and aim the continuous sharing and resharing of information in support of the permanent social interaction. Facebook, the largest social network in the world, reached, in May 2016, the mark of 1.09 billion active users daily, draining 161.7 million hours of users’ attention to the website every day. These users share 4.75 billion units of content daily. The research presented in this dissertation aims to investigate the management of knowledge and collective intelligence, from the introduction of mechanisms that aim to enable users to manage and organize current information in the feeds from Facebook groups in which they participate, turning Facebook into a collective knowledge and information management device that goes far beyond mere interaction and communication among people. The adoption of Design Science Research methodology is intended to instill the "genes" of collective intelligence, as presented in the literature, in the computational artifact being developed, so that intelligence can be managed and used to create even more knowledge and intelligence to and by the group. The main theoretical contribution of this dissertation is to discuss knowledge management and collective intelligence in a complementary and integrated manner, showing how efforts to obtain one also contribute to leveraging the other.
|
132 |
Algoritmos de agrupamento particionais baseados na Meta-heurística de otimização por busca em grupoPACÍFICO, Luciano Demétrio Santos 26 August 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-10-17T18:58:21Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese-ldsp-cin-ufpe.pdf: 2057113 bytes, checksum: 40e1baebc2bc4840cd9803fdc16d952f (MD5) / Made available in DSpace on 2016-10-17T18:58:21Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese-ldsp-cin-ufpe.pdf: 2057113 bytes, checksum: 40e1baebc2bc4840cd9803fdc16d952f (MD5)
Previous issue date: 2016-08-26 / CNPQ / A Análise de Agrupamentos, também conhecida por Aprendizagem Não-Supervisionada,
é uma técnica importante para a análise exploratória de dados, tendo sido largamente
empregada em diversas aplicações, tais como mineração de dados, segmentação de imagens,
bioinformática, dentre outras. A análise de agrupamentos visa a distribuição de um
conjunto de dados em grupos, de modo que indivíduos em um mesmo grupo estejam mais
proximamente relacionados (mais similares) entre si, enquanto indivíduos pertencentes a
grupos diferentes tenham um alto grau de dissimilaridade entre si.
Do ponto de vista de otimização, a análise de agrupamentos é considerada como um caso
particular de problema de NP-Difícil, pertencendo à categoria da otimização combinatória.
Técnicas tradicionais de agrupamento (como o algoritmo K-Means) podem sofrer algumas
limitações na realização da tarefa de agrupamento, como a sensibilidade à inicialização
do algoritmo, ou ainda a falta de mecanismos que auxiliem tais métodos a escaparem de
pontos ótimos locais.
Meta-heurísticas como Algoritmos Evolucionários (EAs) e métodos de Inteligência de
Enxames (SI) são técnicas de busca global inspirados na natureza que têm tido crescente
aplicação na solução de uma grande variedade de problemas difíceis, dada a capacidade de
tais métodos em executar buscas minuciosas pelo espaço do problema, tentando evitar
pontos de ótimos locais. Nas últimas décadas, EAs e SI têm sido aplicadas com sucesso
ao problema de agrupamento de dados. Nesse contexto, a meta-heurística conhecida por
Otimização por Busca em Grupo (GSO) vem sendo aplicada com sucesso na solução de
problemas difíceis de otimização, obtendo desempenhos superiores a técnicas evolucionárias
tradicionais, como os Algoritmos Genéticos (GA) e a Otimização por Enxame de Partículas
(PSO). No contexto de análise de agrupamentos, EAs e SIs são capazes de oferecer boas
soluções globais ao problema, porém, por sua natureza estocástica, essas abordagens
podem ter taxas de convergência mais lentas quando comparadas a outros métodos de
agrupamento.
Nesta tese, o GSO é adaptado ao contexto de análise de agrupamentos particional. Modelos
híbridos entre o GSO e o K-Means são apresentados, de modo a agregar o potencial de
exploração oferecido pelas buscas globais do GSO à velocidade de exploitação de regiões
locais oferecida pelo K-Means, fazendo com que os sistemas híbridos formados sejam
capazes de oferecerem boas soluções aos problemas de agrupamento tratados.
O trabalho apresenta um estudo da influência do K-Means quando usado como operador
de busca local para a inicialização populacional do GSO, assim como operador para
refinamento da melhor solução encontrada pela população do GSO durante o processo
geracional desenvolvido por esta técnica.
Uma versão cooperativa coevolucionária do modelo GSO também foi adaptada ao contexto
da análise de agrupamentos particional, resultando em um método com grande potencial
para o paralelismo, assim como para uso em aplicações de agrupamentos distribuídos.
Os resultados experimentais, realizados tanto com bases de dados reais, quanto com o
uso de conjuntos de dados sintéticos, apontam o potencial dos modelos alternativos de
inicialização da população propostos para o GSO, assim como de sua versão cooperativa
coevolucionária, ao lidar com problemas tradicionais de agrupamento de dados, como a
sobreposição entre as classes do problema, classes desbalanceadas, dentre outros, quando
em comparação com métodos de agrupamento existentes na literatura. / Cluster analysis, also known as unsupervised learning, is an important technique for
exploratory data analysis, and it has being widely employed in many applications such as
data mining, image segmentation, bioinformatics, and so on. Clustering aims to distribute
a data set in groups, in such a way that individuals from the same group are more closely
related (more similar) among each other, while individuals from different groups have a
high degree of dissimilarity among each other.
From an optimization perspective, clustering is considered as a particular kind of NP-hard
problem, belonging in the combinatorial optimization category. Traditional clustering
techniques (like K-Means algorithm) may suffer some limitations when dealing with
clustering task, such as the sensibility to the algorithm initialization, or the lack of
mechanisms to help these methods to escape from local minima points.
Meta-heuristics such as EAs and SI methods are nature-inspired global search techniques
which have been increasingly applied to solve a great variety of difficult problems, given
their capability to perform thorough searches through a problem space, attempting to
avoid local optimum points. From the past few decades, EAs and SI approaches have
been successfully applied to tackle clustering problems. In this context, Group Search
Optimization (GSO) meta-heuristic has been successfully applied to solve hard optimization
problems, obtaining better performances than traditional evolutionary techniques, such as
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). In clustering context,
EAs an SIs are able to obtain good global solutions to the problem at hand, however,
according to their stochastic nature, these approaches may have slow convergence rates in
comparison to other clustering methods.
In this thesis, GSO is adapted to the context of partitional clustering analysis. Hybrid
models of GSO and K-Means are presented, in such a way that the exploration offered
by GSO global searches are combined with fast exploitation of local regions provided
by K-Means, generating new hybrid systems capable of obtaining good solutions to the
clustering problems at hands.
The work also presents a study on the influence of K-Means when adopted as a local
search operator for GSO population initialization, just like its application as an refinement
operator for the best solution found by GSO population during GSO generative process.
A cooperative coevolutionary variant of GSO model is adapted to the context of partitional
clustering, resulting in a method with great potential to parallelism, as much as for the
use in distributed clustering applications.
Experimental results, performed as with the use of real data sets, as with the use of
synthetic data sets, showed the potential of proposed alternative population initialization
models and the potential of GSO cooperative coevolutionary variant when dealing with
classic clustering problems, such as data overlapping, data unbalancing, and so on, in
comparison to other clustering algorithms from literature.
|
133 |
Estudo de Técnicas de Otimização de Sistemas Hidrotérmicos por Enxame de Partículas / Study of Optimization Techniques for Hydrothermal Systems by Particle SwarmGOMIDES, Lauro Ramon 21 June 2012 (has links)
Made available in DSpace on 2014-07-29T15:08:18Z (GMT). No. of bitstreams: 1
Dissertacao Sistemas Hidrotermicos.pdf: 1921130 bytes, checksum: 988097a7877583ede959085e07eade65 (MD5)
Previous issue date: 2012-06-21 / Particle Swarm Optimization has been widely used to solve real-world problems, including
the operation planning of hydrothermal generation systems, where the main goal
is to achieve rational strategies of operation. This can be accomplished by minimizing
the high-cost thermoelectric generation, while maximizing the low-cost hydroelectric generation.
The optimization process must consider a set of complex constrains. This work
presents the application of some recently proposed Particle Swarm Optimizers for a group
of hydroelectric power plants of the Brazilian interconnected system, using real data from
existing plants. There were performed some tests by using the standard PSO, PSO-TVAC,
Clan PSO, Clan PSO with migration, Center PSO, and one approach proposed in this
work, called Center Clan PSO, over three different mid-term periods. All PSO approaches
were compared to the results achieved by a Non-linear Programming algorithm
(NLP). Furthermore, another approach was proposed, based on Center PSO, named Extended
Center PSO. It was observed that the PSO approaches presented as promising
solutions to the problem, even better than NLP in some cases. / A Otimização por Enxame de Partículas tem sido amplamente utilizada na solução de
problemas do mundo real, inclusive para o problema do planejamento da operação de
sistemas de geração hidrotérmicos, em que o principal objetivo é encontrar estratégias
racionais de operação. A solução é obtida através da minimização da geração térmica,
alto custo, enquanto maximiza-se a geração hidrelétrica, que é de baixo custo. O processo
de otimização deve considerar um conjunto complexo de restrições. Este trabalho
apresenta a aplicação de uma abordagem recente chamada de Otimização por Enxame de
Partículas para o problema com um grupo de usinas hidrelétricas do sistema interligado
brasileiro, utilizando dados reais das usinas existentes. Foram realizados testes usando o
PSO original, PSO-TVAC, Clan PSO, Clan PSO com a migração, Center PSO, e uma
abordagem proposta neste trabalho, denominada Center Clan PSO, ao longo de três diferentes
períodos de médio prazo. Todas as abordagens PSO foram comparadas com os
resultados obtidos por um algoritmo de programação não linear (NLP). Além disso, uma
outra abordagem foi proposta, com base no algoritmo Center PSO, chamada Extended
Center PSO. Observou-se que as abordagens PSO apresentaram resultados promissores
na solução do problema, com resultados até mesmo melhores, em alguns casos, que os
obtidos pelo NLP.
|
134 |
Fault detection in autonomous robotsChristensen, Anders Lyhne 27 June 2008 (has links)
In this dissertation, we study two new approaches to fault detection for autonomous robots. The first approach involves the synthesis of software components that give a robot the capacity to detect faults which occur in itself. Our hypothesis is that hardware faults change the flow of sensory data and the actions performed by the control program. By detecting these changes, the presence of faults can be inferred. In order to test our hypothesis, we collect data in three different tasks performed by real robots. During a number of training runs, we record sensory data from the robots both while they are operating normally and after a fault has been injected. We use back-propagation neural networks to synthesize fault detection components based on the data collected in the training runs. We evaluate the performance of the trained fault detectors in terms of the number of false positives and the time it takes to detect a fault.<p>The results show that good fault detectors can be obtained. We extend the set of possible faults and go on to show that a single fault detector can be trained to detect several faults in both a robot's sensors and actuators. We show that fault detectors can be synthesized that are robust to variations in the task. Finally, we show how a fault detector can be trained to allow one robot to detect faults that occur in another robot.<p><p>The second approach involves the use of firefly-inspired synchronization to allow the presence of faulty robots to be determined by other non-faulty robots in a swarm robotic system. We take inspiration from the synchronized flashing behavior observed in some species of fireflies. Each robot flashes by lighting up its on-board red LEDs and neighboring robots are driven to flash in synchrony. The robots always interpret the absence of flashing by a particular robot as an indication that the robot has a fault. A faulty robot can stop flashing periodically for one of two reasons. The fault itself can render the robot unable to flash periodically.<p>Alternatively, the faulty robot might be able to detect the fault itself using endogenous fault detection and decide to stop flashing.<p>Thus, catastrophic faults in a robot can be directly detected by its peers, while the presence of less serious faults can be detected by the faulty robot itself, and actively communicated to neighboring robots. We explore the performance of the proposed algorithm both on a real world swarm robotic system and in simulation. We show that failed robots are detected correctly and in a timely manner, and we show that a system composed of robots with simulated self-repair capabilities can survive relatively high failure rates.<p><p>We conclude that i) fault injection and learning can give robots the capacity to detect faults that occur in themselves, and that ii) firefly-inspired synchronization can enable robots in a swarm robotic system to detect and communicate faults.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
135 |
Design and analysis of evolutionary and swarm intelligence techniques for topology design of distributed local area networksKhan, S.A. (Salman Ahmad) 27 September 2009 (has links)
Topology design of distributed local area networks (DLANs) can be classified as an NP-hard problem. Intelligent algorithms, such as evolutionary and swarm intelligence techniques, are candidate approaches to address this problem and to produce desirable solutions. DLAN topology design consists of several conflicting objectives such as minimization of cost, minimization of network delay, minimization of the number of hops between two nodes, and maximization of reliability. It is possible to combine these objectives in a single-objective function, provided that the trade-offs among these objectives are adhered to. This thesis proposes a strategy and a new aggregation operator based on fuzzy logic to combine the four objectives in a single-objective function. The thesis also investigates the use of a number of evolutionary algorithms such as stochastic evolution, simulated evolution, and simulated annealing. A number of hybrid variants of the above algorithms are also proposed. Furthermore, the applicability of swarm intelligence techniques such as ant colony optimization and particle swarm optimization to topology design has been investigated. All proposed techniques have been evaluated empirically with respect to their algorithm parameters. Results suggest that simulated annealing produced the best results among all proposed algorithms. In addition, the hybrid variants of simulated annealing, simulated evolution, and stochastic evolution generated better results than their respective basic algorithms. Moreover, a comparison of ant colony optimization and particle swarm optimization shows that the latter generated better results than the former. / Thesis (PhD)--University of Pretoria, 2009. / Computer Science / unrestricted
|
136 |
Intentionalitet i kollektiva beteenden hos en artificiell svärm / Intentionality in collective behaviors of an artificial swarmStenfelt, Matilda January 2020 (has links)
Målet med den här datorbaserade filosofiska utredningen inom kognitionsvetenskap är att utforska intentionalitet i kollektiva beteenden hos artificiella svärmar. Två definitioner av intentionalitet utforskades; som representationer hos agenter och som observerbara attribut hos agenter, även kallat intentional stance. För den representativa definitionen användes en modell av kollektiv intentionalitet som integrerar två olika ståndpunkter, singularståndpunkten och pluralståndpunkten av kollektiv intentionalitet. Modellen har fem villkor för intentionalitet enligt SharedPlans. Genom att använda Belief-Desire-Intention-modellen för intelligenta agenter operationaliserades villkoren till möjliga representationer. En implementation av en målinriktad artificiell svärm i NetLogo analyserades genom att studera hur väl den uppfyllde de operationaliserade villkoren. Fyra av fem villkor var uppfyllda. Flera simuleringar med olika hastighet genomfördes även under observation. Dessa visade att processen kunde delas upp i tre faser med olika egenskaper. Den utforskande fasen hade gemensam intentionalitet centrerad till ett fåtal aktiva individer. Beslutsfasen hade individuella intentioner som kunde stå i konflikt med varandra medan gemensamma intentioner strävade mot samma mål. I flyttfasen var de individuella intentionerna att förhålla sig till varandra, vilket fick gruppen att upplevas som en enhet med intentionen att flytta gruppen. Resultaten visade att intentionalitet kan observeras och analyseras hos den här artificiella svärmen. Däremot har svärmen inte kollektiv intentionalitet utifrån båda ståndpunkterna.
|
137 |
Cooperation in self-organized heterogeneous swarmsMoritz, Ruby Louisa Viktoria 26 February 2015 (has links)
Cooperation in self-organized heterogeneous swarms is a phenomenon from nature with many applications in autonomous robots. I specifically analyzed the problem of auto-regulated team formation in multi-agent systems and several strategies to learn socially how to make multi-objective decisions. To this end I proposed new multi-objective ranking relations and analyzed their properties theoretically and within multi-objective metaheuristics. The results showed that simple decision mechanism suffice to build effective teams of heterogeneous agents and that diversity in groups is not a problem but can increase the efficiency of multi-agent systems.
|
138 |
Face Detection using Swarm IntelligenceLang, Andreas January 2010 (has links)
Groups of starlings can form impressive shapes as they travel northward together in the springtime. This is among a group
of natural phenomena based on swarm behaviour. The research field of artificial intelligence in computer science,
particularly the areas of robotics and image processing, has in recent decades given increasing attention to the underlying
structures. The behaviour of these intelligent swarms has opened new approaches for face detection as well. G. Beni and J.
Wang coined the term “swarm intelligence” to describe this type of group behaviour. In this context, intelligence describes
the ability to solve complex problems.
The objective of this project is to automatically find exactly one face on a photo or video material by means of swarm
intelligence. The process developed for this purpose consists of a combination of various known structures, which are then
adapted to the task of face detection. To illustrate the result, a 3D hat shape is placed on top of the face using an example
application program.:1 Introduction
1.1 Face Detection
1.2 Swarm Intelligence and Particle Swarm Optimisation Fundamentals
3 Face Detection by Means of Particle Swarm Optimisation
3.1 Swarms and Particles
3.2 Behaviour Patterns
3.2.1 Opportunism
3.2.2 Avoidance
3.2.3 Other Behaviour Patterns
3.3 Stop Criterion
3.4 Calculation of the Solution
3.5 Example Application
4 Summary and Outlook
|
139 |
Particle swarm optimization applied to real-time asset allocationReynolds, Joshua 05 1900 (has links)
Particle Swam Optimization (PSO) is especially useful for rapid optimization of problems involving multiple objectives and constraints in dynamic environments. It regularly and substantially outperforms other algorithms in benchmark tests. This paper describes research leading to the application of PSO to the autonomous asset management problem in electronic warfare. The PSO speed provides fast optimization of frequency allocations for receivers and jammers in highly complex and dynamic environments. The key contribution is the simultaneous optimization of the frequency allocations, signal priority, signal strength, and the spatial locations of the assets. The fitness function takes into account the assets' locations in 2 dimensions, maximizing their spatial distribution while maintaining allocations based on signal priority and power. The fast speed of the optimization enables rapid responses to changing conditions in these complex signal environments, which can have real-time battlefield impact. Results optimizing receiver frequencies and locations in 2 dimensions have been successful. Current run-times are between 450ms (3 receivers, 30 transmitters) and 1100ms (7 receivers, 50 transmitters) on a single-threaded x86 based PC. Run-times can be substantially decreased by an order of magnitude when smaller swarm populations and smart swarm termination methods are used, however a trade off exists between run-time and repeatability of solutions. The results of the research on the PSO parameters and fitness function for this problem are demonstrated.
|
140 |
Hardware Security Design, and Vulnerability Analysis of FPGA based PUFs to Machine Learning and Swarm Intelligence based ANN Algorithm AttacksOun, Ahmed 11 July 2022 (has links)
No description available.
|
Page generated in 0.0511 seconds