Spelling suggestions: "subject:"[een] WALL"" "subject:"[enn] WALL""
151 |
Survey of cell wall structure in some FlorideophycidaeRusanowski, Paul Charles January 1970 (has links)
Cell wall structure was investigated in 20 different red algae. Representatives from all 4- families of the order Ceramiales and one family of the order Gigartinales were investigated. Of these, 3 genera, Polysiphonia, Pterosiphonia and Antithamnion were investigated with regards to both the cellulosic and mucilaginous portions of the cell wall. A new staining technique utilizing a combination of ruthenium red and osmium tetroxide as a postfixation was used in the latter portion of the study. The ultrastructure of pit connections was examined in all algae.
The inner cellulosic portion of the cell wall consists of a reticulate pattern of microfibrils which appear densely stained, In Pterosiphonia this cellulosic portion was found to consist of 2 layers; an inner layer of microfibrils which ensheathed individual cells and an outer layer of microfibrils which ensheathed the entire thallus and was in contact with the mucilaginous coat. The microfibrils in the inner layer appear nearly cross-sectioned, while those in the outer layer appear more longitudinally oriented to the plane of sectioning.
The outer mucilaginous coat covers the entire thallus. It consists of 4 layers. The first or outermost layer consists of loose bunches of microfibrils extending out from the second layer. The second layer consists of a zone of medium electron density approximately 750 A in thickness. The third layer is wholly contained within the second layer. It is composed of a densely staining band of microfibrils extending from a similarly staining membrane-like structure. The fourth layer is a densely stained membrane-like structure in contact with the cellulosic portion of the cell wall. An additional layer, the D layer, is sometimes found in the cell wall. When present it is found in the outermost portion of the cellulosic wall and obscures the fourth layer of the mucilaginous coat. It consists of a densely staining amorphous material.
Investigation of the pit connection showed the occurrence of 2 stages of one basic pit structure. One stage, the single disc stage-pit structure, has been found in all algae investigated. It consists of a solid, lenticular, membrane-bound plug situated within an aperture in the cell wall. The plug consists of a granular material surrounded by a zone of densely staining amorphous material.
The other stage, the double disc stage pit structure, is a modification of the single disc stage. It is not found in young cells near the apex of the thallus, but only in cells which have, or are undergoing, rapid elongation and vacuolation. This pit structure has only been observed in axial cells of the family Ceramiaceae in the order Ceramiales. The double disc stage pit structure differs from the single disc stage in that the granular material of the plug is segregated into 2 regions or plates, one on either side of the plug. The central region of the plug at first appears clear but later appears to be partially occupied by a granular to fibrillar material. The differentiation of the double disc stage pit structure from the single disc stage has been described.
These observations are thought to support and confirm the earlier work of Jungers (25). However, his observations have been extended through the use of electron microscopy in this study. It has been proposed that the terms used in this study, single disc stage- and double disc stage pit structures, replace the terms Polysiphonia and Griffithsia pits used by Jungers. / Science, Faculty of / Botany, Department of / Graduate
|
152 |
Airflow patterns in ventilated wall cavitiesOdewole, Gboyega Akindeji January 2011 (has links)
Though heating, insulation, wall claddings and cavity-wall construction are considered as measures for remediating moisture and condensation in buildings, ventilation of wall cavities has however become a mantra among architects and other building professionals. Holes of any size and shape are made and located on building facades based on the accepted wisdom that a little air movement will keep the wall cavities dry. Whilst ventilation has been found to be successful in the control of moisture and condensation in rooms and larger enclosures, there is however insufficient understanding of how it works in thin spaces with high aspect ratios, such as the wall cavities studied in this thesis.In order to put in place good control and management practices in the remediation of moisture and condensation in vertical wall cavities by natural ventilation, it is vital to understand the dynamics of airflow in these cavities. In this thesis therefore, different size and shape of slots were employed to numerically investigate the effects of size, spacing and number of the slots on the characteristics of the velocity fields (patterns of airflow and distributions of velocity) in different cavity models. The Reynolds-Averaged-Navier-Stokes (RANS) methodology was employed to simulate the cavity flows under different modelling conditions using FLUENT. The BS 5925 model, an empirical relation for predicting ventilation rates in rooms and other larger enclosures, was employed and modified to predict ventilation rates in these cavities. Experimentally, the mapping of the airstreams in these cavities was obtained under similar reference (inlet) wind speeds employed for the numerical investigations.The results of this study show that there exists a potential at higher wind speeds for natural ventilation in the remediation of moisture and condensation in the cavities of vertical walls. The steady state approach employed in the RANS-based computation of cavity flows in this thesis averages out the peak values of air velocities and therefore gives no information about regions of maxima or minima velocity values even at higher wind speeds. This makes the predicted air change rates insensitive to the inlet air velocities from the ventilation slots and therefore makes the results more applicable for long term control and management of moisture in these cavities. In order to therefore put in place short, medium and long term plans for remediation of moisture in these wall cavities, a time-dependent computation is required. This will also allow the efficiency of the cavity ventilation to be properly assessed. Using the modified BS 5925 model, reasonable predictions were obtained for the air change rates of the wall cavities with the different size of ventilation slots employed. Close agreements are also obtained at lower and higher wind speeds between the predicted ventilation rates from the modified BS 5925 model and the experimental results employed as benchmark for validating the results.
|
153 |
Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete PanelAshkanalam, Aida 12 1900 (has links)
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
|
154 |
Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based SheathingYanagi, Noritsugu 05 1900 (has links)
The cold-formed steel framed shear walls with steel sheets and wood-based sheathing are both code approved lateral force resisting system in light-framed construction. In the United States, the current design approach for cold-formed steel shear walls is capacity-based and developed from full-scale tests. The available design provisions provide nominal shear strength for only limited wall configurations. This research focused on the development of analytical models of cold-formed steel framed shear walls with steel sheet and wood-based sheathing to predict the nominal shear strength of the walls at their ultimate capacity level. Effective strip model was developed to predict the nominal shear strength of cold-formed steel framed steel sheet shear walls. The proposed design approach is based on a tension field action of the sheathing, shear capacity of sheathing-to-framing fastener connections, fastener spacing, wall aspect ratio, and material properties. A total of 142 full scale test data was used to verify the proposed design method and the supporting design equations. The proposed design approach shows consistent agreement with the test results and the AISI published nominal strength values. Simplified nominal strength model was developed to predict the nominal shear strength of cold-formed steel framed wood-based panel shear walls. The nominal shear strength is determined based on the shear capacity of individual sheathing-to-framing connections, wall height, and locations of sheathing-to-framing fasteners. The proposed design approach shows a good agreement with 179 full scale shear wall test data. This analytical method requires some efforts in testing of sheathing-to-framing connections to determine their ultimate shear capacity. However, if appropriate sheathing-to-framing connection capacities are provided, the proposed design method provides designers with an analytical tool to determine the nominal strength of the shear walls without conducting full-scale tests.
|
155 |
Microcompartmentalization of Cell Wall Integrity Signaling in Kluyveromyces lactisMeyer, Sascha 24 September 2014 (has links)
The yeast cell wall provides a first barrier to the environment, confers shape and stability to the cells, and serves as a model for fungal cell wall biosynthesis and function in general. During normal growth, during mating and upon cell surface stress, new wall synthesis is induced by a conserved signaling cascade, the cell wall integrity (CWI) pathway. A signal is initiated by plasma membrane-spanning sensors and transduced through a mitogen-activated protein kinase (MAPK) cascade, which ultimately activates a transcriptional activator, Rlm1. The first part of this thesis analyses the role of this MADS-box transcription factor in the milk yeast Kluyveromyces lactis, which has not been investigated, until now. With respect to the distribution of the upstream CWI sensors, evidence for the existence of a special plasma membrane microcompartment, generally referred to as eisosomes, in the milk yeast is provided in the second part of the thesis.
Regarding the transcription factor KlRlm1, its impact on the physiology of K. lactis seems to be different from its homolog in Saccharomyces cerevisiae, ScRlm1, although it clearly acts in CWI signaling, too. Thus, in contrast to the Scrlm1 mutant, a Klrlm1 deletion is sensitive, rather than hyper-resistant, towards Congo red and Calcofluor white, typical stress agents used in cell wall research. Data on cross-complementation of the two genes in the respective heterologous yeast indicate that KlRlm1 and ScRlm1 each perform their optimal function only in the native host.To investigate the impact of a Klrlm1 deletion on the transcriptional profile of K. lactis, data from total mRNA sequencing were analyzed in comparison to a wild-type strain. Many of the genes identified did not correspond to known Rlm1 target genes in S. cerevisiae, but many relate to other stress responses (e.g. KlGRE1, KlFMP16, KLLA0C05324g, KLLA0F18766g, KlUGX2) and to chitin synthesis (KlCHS1, KlSKT5 and KlYEA1), both probably connected to cell wall composition. The functions of a large group of KlRlm1 dependent genes identified here are yet uncharacterized or lack homologs in S. cerevisiae. The plasma membrane of fungi is a specialized organelle, which is ordered into several lateral domains, which we define as microcompartments, since each is composed of a special combination of proteins in their lipid environment. Such microcompartments are believed to control a variety of signaling (and transport) processes in all sorts of eukaryotic cells. Microcompartmentalization is also observed in the yeast plasma membrane, e.g. displayed by the CWI sensors in K. lactis, as shown in this thesis. Since distribution of the latter sensors is reminiscent of that of eisosomes, it was also investigated by live-cell fluorescence microscopy, how KlPil1, KlLsp1 and KlSur7 (all homologs of eisosomal proteins in S. cerevisiae) are distributed. Since they form the typical membrane patches, which are not present in deletion mutants of KlPIL1, the major structural component of eisosomes, one can conclude, that eisosomal microcompartments form in K. lactis and are composed similar to their counterparts in S. cerevisiae. The CWI sensors are excluded from these structures and form their separate microcompartments. The exact physiological function of eisosomes in fungi is still a matter of debate and future studies in K. lactis may help to address this role.
|
156 |
A Study of Cell Wall Related Regulatory Components During Plant DevelopmentMujahid, Hana 17 May 2014 (has links)
Although the cell wall is an essential plant cell structure influencing several important aspects of plant development, little is known about the genes and proteins that regulate its structure and function. In this dissertation, we first examined the regulation of the nuclear proteome of rice (Oryza sativa) in response to cell wall removal. Using labelree comparative proteome analysis we found that, upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 nuclear proteins were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. This study led to a novel discovery that removal of the cell wall results in dynamic changes in the nuclear proteome affecting the regulation of proteins involved in various molecular processes such as chromatin and nucleosome assembly, protein-DNA complex assembly, and DNA packaging. To further study cell wall development, we utilized the unique features of cotton fiber and performed a proteomic study using four stages during cotton fiber cell wall development including 10 days post anthesis (dpa), 15 dpa, 25 dpa, and 35 dpa. In addition, we aimed to improve protein extraction for recalcitrant fiber stages using pressure cycling technology (PCT). To our knowledge, this study identified the largest number of proteins and differentially expressed proteins in the G. hirsutum cotton species including the 35 dpa fiber proteome which has not been examined in prior reports. Additionally, in order to identify key genes regulating cell wall cellulose content, a mutant with a substantial reduction in cellulose was characterized in Arabidopsis. It was found that the mutated gene was VHA-E1. We found that the VHA-E1 protein formed a distinct plate in the boundary of two fusion-destined vacuoles to tether vacuoles together. The eventual vacuole fusion was achieved by pinching off the vacuole-boundary plate producing a stable membrane-bound intravacuolar globoid. These observations demonstrate that VHA-E1 may be involved in a novel cellular process regulating fusion of vacuoles by forming a cellular structure referred to as the vacuole boundary plate. Altogether, these findings suggest plant vacuole fusion and central vacuole biogenesis involve an unprecedented mechanism in Arabidopsis.
|
157 |
Argentum Potorium in Romano-Campanian Wall-PaintingTamm, John A. 04 1900 (has links)
The first centuries BC and AD encompassed the first great period of Roman silverware
production. Wall-paintings, surviving pieces, and textual references all testify to the importance
of silverware, in particular the silver vessels and implements used in the preparation, service, and
drinking of wine, during this period. Besides the functional aspects, possession of silverware
served also as an indicator of one's wealth and status.
In a number of wall-paintings with banqueting or related themes, primarily from
Campania but also from Rome, silverware plays a prominent role. The painted vessels are often
viewed, by modern scholars, as representative of the kinds of vessels then current in the Roman
world, as if the painters were using actual pieces for models. This provides the point of departure
for this dissertation, a detailed study of drinking silver in Romano-Campanian wall-painting.
Such a study reveals more than just whether or not the painters were closely copying
actual vessels; it is, in fact, argued here that such copying was not part of their usual procedure.
The paintings also reveal what kinds of vessels were considered relevant in a banqueting context,
and at times, how these vessels were used. Other areas onto which the paintings cast light include
the working methods in general of the painters, the question of prototypes and their possible
contents, and the role of the patron.
The paintings studied in this dissertation cannot be divorced from Roman wall-paintings
as a whole. The conclusions drawn here, therefore, have relevance for all Roman wall-paintings
and, to some degree, for Roman art in general. / Thesis / Doctor of Philosophy (PhD)
|
158 |
Mechanism and Significance of Slip and New Mixing Elements During Flow in Modular Intermeshing Co-Rotating Twin Screw ExtrudersBan, Kyunha 26 August 2008 (has links)
No description available.
|
159 |
Glucan and Glycogen Exist as a Covalently Linked Macromolecular Complex in the Cell Wall of and Other SpeciesLowman, Douglas W., Sameer Al-Abdul-Wahid, M, Ma, Zuchao, Kruppa, Michael D., Rustchenko, Elena, Williams, David L. 01 December 2021 (has links)
The fungal cell wall serves as the interface between the organism and its environment. Complex carbohydrates are a major component of the cell wall, , glucan, mannan and chitin. β-Glucan is a pathogen associated molecular pattern (PAMP) composed of β-(1 → 3,1 → 6)-linked glucopyranosyl repeat units. This PAMP plays a key role in fungal structural integrity and immune recognition. Glycogen is an α-(1 → 4,1 → 6)-linked glucan that is an intracellular energy storage carbohydrate. We observed that glycogen was co-extracted during the isolation of β-glucan from SC5314. We hypothesized that glucan and glycogen may form a macromolecular species that links intracellular glycogen with cell wall β-(1 → 3,1 → 6)-glucan. To test this hypothesis, we examined glucan-glycogen extracts by multi-dimensional NMR to ascertain if glycogen and β-glucan were interconnected. H NMR analyses confirmed the presence of glycogen and β-glucan in the macromolecule. Diffusion Ordered SpectroscopY (DOSY) confirmed that the β-glucan and glycogen co-diffuse, which indicates a linkage between the two polymers. We determined that the linkage is not via peptides and/or small proteins. Our data indicate that glycogen is covalently linked to β-(1 → 3,1 → 6) glucan via the β -(1 → 6)-linked side chain. We also found that the glucan-glycogen complex was present in , and , but was not present in or hyphal glucan. These data demonstrate that glucan and glycogen form a novel macromolecular complex in the cell wall of and other species This new and unique structure expands our understanding of the cell wall in species.
|
160 |
Smart DC/DC Wall Plug Design for the DC House ProjectLiu, Richard Sinclair 01 December 2017 (has links) (PDF)
The present day duplex wall receptacle in the United States provides 120Vrms AC at 60Hz, which comes from a standard set for AC loads by the National Electrical Manufacturers Association. With a DC system, such as what is used in the DC House project currently being developed at Cal Poly, providing DC power to DC loads presents a technical challenge due to the different required DC operating voltages of the loads. This thesis entails the design and construction of a Smart DC/DC Wall Plug, which can automatically adjust its output voltage to match any required DC load voltages. In the DC House implementation, renewable energy sources generate power to feed a 48V DC Bus. The Smart DC/DC Wall Plug converts power from the 48V bus to the appropriate voltage and power levels needed by the DC loads. The Smart DC/DC Wall Plug relies on load current detection, and uses a 10-bit digital potentiometer and a programmable current DAC to adjust the feedback network, thereby changing the output voltage. A dual channel 100W PCB prototype utilizing a STMF302R8 microcontroller is implemented for this design while confining to the NEMA wall outlet form factor. Results of hardware test verify the functionality of the Smart DC/DC Wall Plug in producing the required DC load voltages. Technical issues during the development of the Smart DC/DC Wall Plug will be described, along with suggestions to further improve from the current design.
|
Page generated in 0.2036 seconds