• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] ESSAYS IN FINANCIAL RISK MANAGEMENT OF EMERGING COUNTRIES / [pt] ENSAIOS EM GERENCIAMENTO DE RISCOS FINANCEIROS DE PAÍSES EMERGENTES

ALEX SANDRO MONTEIRO DE MORAES 14 April 2016 (has links)
[pt] Nesta tese são desenvolvidos três ensaios que avaliam os riscos relativos a alguns países emergentes. No primeiro ensaio, por meio do uso de modelos da família GARCH, verificou-se que o aumento dos pesos relativos atribuídos às observações mais antigas em função do aumento do horizonte de previsão resulta em melhores estimativas de volatilidade. Por meio da utilização de sete modelos de previsão de volatilidade e séries de retornos de ativos do mercado financeiro brasileiro (ações de Petrobrás e Vale, índice Ibovespa, taxa de câmbio Real/Dólar, taxa de juros de 1 ano e taxa de juros de 3 anos de títulos de dívida do governo brasileiro emitidos em reais) compararam-se as estimativas obtidas na amostra (in-sample) com as observações fora da amostra (out-of-sample). Com base nesta comparação, constatou-se que as melhores estimativas de previsão de volatilidade foram obtidas, predominantemente, por dois modelos que permitem que seus parâmetros variem em função do horizonte de previsão: o modelo modificado EGARCH e o modelo ARLS. Concluiu-se que a utilização de modelos de previsão de volatilidade tradicionais, os quais mantêm inalterados os pesos relativos atribuídos às observações antigas e recentes, independente do horizonte de previsão, mostrou-se inapropriada. No segundo ensaio comparou-se os desempenhos dos modelos de memória longa (FIGARCH) e curta (GARCH) na previsão de value-at-risk (VaR) e expected shortfall (ES) para múltiplos períodos à frente para seis índices de ações de mercados emergentes. Utilizou-se, para dados diários de 1999 a 2014, uma adaptação da simulação de Monte Carlo para estimar previsões de VaR e ES para 1, 10 e 20 dias à frente, usando modelos FIGARCH e GARCH para quatro distribuições de erros. Os resultados sugerem que, em geral, os modelos FIGARCH melhoram a precisão das previsões para horizontes mais longos; que a distribuição dos erros pode influenciar a decisão de escolha do melhor modelo; e que apenas para os modelos FIGARCH houve redução do número de subestimações do VaR verdadeiro com o aumento do horizonte de previsão. Com relação ao terceiro ensaio, percebeu-se que aadministração de riscos é um assunto que há muito tempo já faz parte do dia-adia das instituições financeiras e não financeiras, todavia não é comum a utilização de métricas de risco na Administração Pública. Considerando a existência dessa lacuna e a importância do tema para uma adequada gestão dos recursos públicos, principalmente para países emergentes, esse terceiro ensaio teve como propósitos estimar, em um único valor, o risco de liquidez de um Órgão Público, a Marinha do Brasil, e identificar as fontes desse risco. Para isso, utilizou-se o exposure-based Cash-Flow-at-Risk (CFaR) model, o qual, além de resumir a estimação do risco de liquidez a um único valor, ajuda no gerenciamento desse risco pelo fornecimento de informações adicionais sobre a exposição do fluxo de caixa da organização a diversos fatores de risco. Usando dados trimestrais do período compreendido entre o primeiro trimestre de 1999 ao quarto trimestre de 2013, identificaram-se as taxas de câmbio real/dólar, dólar/libra, a taxa SELIC, a Necessidade de Financiamento do Setor Público e a taxa de inflação dos Estados Unidos como os fatores de risco macroeconômicos e de mercado que impactam o fluxo de caixa da Marinha, bem como se calculou seu CFaR com 95 por cento de nível de confiança para o período de um trimestre à frente. / [en] In this thesis we develop three essays on risk management in some emerging countries. On the first one, using models of the GARCH family, we verified that the increase in relative weights assigned to the earlier observations due to the increase of the forecast horizon results in better estimates of volatility. Through the use of seven forecasting models of volatility and return series of financial markets assets (shares of Petrobras and Vale, Bovespa index, exchange rate Real/Dollar, 1-year and 3 years interest rates of Brazilian Government bonds issued in Reais) the estimates obtained in the sample (in-sample) were compared with observations outside the sample (out-of-sample). Based on this comparison, it was found that the best estimates of expected volatility were obtained predominantly by two models that allow its parameters to vary depending on the forecast horizon: the modified EGARCH model (exponential generalized autoregressive conditional heteroskedastic) and the ARLS model proposed by Ederington and Guan (2005). We conclude that the use of traditional forecasting models of volatility, which keeps unchanged relative weights assigned to both old and new observations, regardless of the forecast horizon, was inappropriate. On the second essay we compared the performance of long-memory models (FIGARCH) with short-memory models (GARCH) in forecasting value-at-risk (VaR) and expected shortfall (ES) for multiple periods ahead for six emerging markets stock índices. We used daily data from 1999 to 2014 and an adaptation of the Monte Carlo simulation to estimate VaR and ES forecasts for multiple steps ahead (1, 10 and 20 days ), using FIGARCH and GARCH models for four errors distributions. The results suggest that, in general, the FIGARCH models improve the accuracy of forecasts for longer horizons; that the error distribution used may influence the decision about the best model; and that only for FIGARCH models the occurrence of underestimation of the true VaR is less frequent with increasing time horizon. Regarding the third essay, we realized that risk management is a subject that has long been part of the day-to-day activities of financial and nonfinancial institutions, yet the use of risk metrics is not common among public agencies. Considering this gap, and the importance of the issue for the proper management of public resources, the purpose of this third essay is to estimate, in a single value, the liquidity risk of a public agency, in this case, the Brazilian Navy, and to identify the sources of risk. To do this, the exposure-based Cash-Flow-at- Risk (CFaR) model has been developed, which, in addition to summarizing the liquidity risk estimation in a single value, helps in managing risk by providing additional information about the exposure of the organization s cash flow to various risk factors. Using quarterly data for the period between the first quarter of 1999 and the fourth quarter of 2013, the macroeconomics and market risk factors that impact the Navy s cash flow were identified. Moreover, the CFaR was calculated at a 95 percent confidence level for a period of one quarter ahead.

Page generated in 0.0314 seconds