• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] MODELAGEM E CONTROLE DE UM QUADRICÓPTERO PARA NAVEGAÇÃO AUTÔNOMA EM CAMPOS AGRÍCOLAS / [en] MODELING AND CONTROL OF A QUADCOPTER FOR AUTONOMOUS NAVIGATION IN AGRICULTURAL FIELDS

YESSICA ROSAS CUEVAS 04 October 2021 (has links)
[pt] Neste trabalho, aborda-se a modelagem e controle de um quadricóptero para navegação autônoma em ambientes agrícolas. Os modelos cinemático e dinâmico do veículo aéreo são computados a partir do formalismo de Newton-Euler, incluindo efeitos aerodinâmicos e características das hélices. O sistema de movimento do quadricóptero pode ser dividido em dois subsistemas, um translacional e outro rotacional, responsáveis pelo controle de posição nos eixos x, y, z, and atitude do veículo no espaço Cartesiano. A primeira abordagem de controle é linear, se presenta dois controladores, um controlador proporcional-derivativo (PD) e o adaptativo baseado no espaço de estados. A segunda abordagem é não-linear e baseada em um controlador adaptativo a fim de lidar com a presença de incertezas nos parâmetros do sistema. Simulações numéricas são executadas em Matlab para ilustrar o desempenho e a viabilidade da metodologia de controle proposta. Simulações computacionais 3D são executadas em Gazebo para verificar a navegação autônoma em um campo agrícola. / [en] In this work, we address the modeling and control design of a quadrotor for autonomous navigation in agricultural environments. The kinematic and dynamic models of the aerial vehicle are derived following the Newton-Euler formalism. The motion system of the quadrotor can be split into two subsystems, that is, translational and rotational subsystems, responsible for controlling the position along the longitudinal, transverse and vertical axes of the Cartesian space as well as its orientation about the corresponding axes. The first linear control approach is based on the proportional-derivative (PD) controller, whereas the second nonlinear control approach is based on an adaptive controller in order to deal with the presence of uncertainties in the system parameters. Numerical simulations are carried out in Matlab to illustrate the performance and feasibility of the proposed control methodology. Gazebo was used to perform the 3D simulations for verifying autonomous navigation in agricultural fields.

Page generated in 0.0485 seconds