• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 355
  • 77
  • 44
  • 32
  • 24
  • 14
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 690
  • 641
  • 416
  • 186
  • 178
  • 82
  • 67
  • 63
  • 63
  • 59
  • 54
  • 49
  • 48
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Scaling and Optimization of Polymer Bulk Homojunction Light-Emitting and Photovoltaic Cells

Bonnet, Wayne 15 September 2008 (has links)
The polymer light-emitting electrochemical cell (LEC) is an alternative method for producing electroluminescence (EL) from conjugated luminescent polymers. The in situ electrochemical doping process that leads to a dynamic p-n junction makes the devices highly insensitive to device thickness and relatively insensitive to electrode materials. These characteristics make an extremely large planar configuration accessible for observing the cross-section of the device and watching it turn on dynamically. By cooling the device to freeze ionic motion, the junction can be stabilized and photovoltaic (PV) characteristics investigated. In the planar configuration, the p-n junction was found to make up a small fraction of the inter-electrode spacing. Enabled by the insensitivity to electrode materials, small metallic particles embedded in the LEC film led to a large number of p-n junctions that could be turned on in series and parallel. This alleviates the issue of low specific emitting area suffered by planar devices and leads to improved EL effciency as well as a high open circuit voltage (Voc) when operated as a PV cell. The bulk homojunction fabrication process has been optimized by segregating the metallic particles to eliminate large aggregates. A new technique to achieve highly uniform EL from large planar LECs is also presented here. By the evaporation of a thin gold or silver film on top of an LEC, independent islands form that act as doping initiation sites across the device width. A bulk homojunction is turned on in the top layer of the LEC with a high applied bias. Island diameters and spacings are several orders of magnitude smaller than the particles in previously-reported bulk homojunction devices. Both island and particle devices had their interelectrode spacings scaled down by at least a factor of 10. The successful scaling is a promising result for the possibility of a sandwich configuration bulk homojunction device. In the case of silver island devices, cooling a 50-micron wide device after turn-on resulted in a PV cell with an open circuit voltage of 8.3 V, several times the band gap of the luminescent polymer used. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-09-12 12:21:12.949
132

Functional and Flexible Light-Emitting Electrochemical Cells

Asadpoordarvish, Amir January 2015 (has links)
The introduction of artificial illumination has brought extensive benefits to mankind, and during the last years we have seen a tremendous progress in this field with the introduction of the energy-efficient light-emitting diode (LED) and the high-contrast organic LED display. These high-end technologies are, however, produced using costly and complex processes, and it is anticipated that the next big thing in the field will be the advent of a low-cost and “green” illumination technology, which can be fabricated in a cost- and material-efficient manner using non-toxic and abundant raw materials, and which features attractive form factors such as flexibility, robustness and light-weight. The light-emitting electrochemical cell (LEC) is a newly invented illumination technology, and in this thesis we present results that imply that it can turn the above vision into reality. The thin-film LEC comprises an active material sandwiched between a cathode and an anode as its key constituent parts. With the aid of a handheld air-brush, we show that functional large-area LECs can be fabricated by simply spraying three layers of solution -- forming the anode, active material, and cathode -- on top of a substrate. We also demonstrate that such “spray-sintered” LECs can feature multicolored emission patterns, and be fabricated directly on complex-shaped surfaces, with one notable example being the realization of a light-emission fork! Almost all LECs up-to-date have been fabricated on glass substrates, but for a flexible and light-weight emissive device, it is obviously relevant to identify more appropriate substrate materials. For this end, we show that it is possible to spray-coat the entire LEC directly on conventional copy paper, and that such paper-LECs feature uniform light-emission even under heavy bending and flexing. We have further looked into the fundamental aspects of the LEC operation and demonstrated that the in-situ doping formation, which is a characteristic and heralded feature of LECs, can bring problems in the form of doping-induced self-absorption. By quantitatively analyzing this phenomenon, we provided straightforward guidelines on how future efficiency-optimized LEC devices should be designed. The in-situ doping formation process brings the important advantage that LECs can be fabricated from solely air-stabile materials, but during light emission the device needs to be protected from the ambient air. We have therefore developed a functional glass/epoxy encapsulation procedure for the attainment of LEC devices that feature a record-long ambient-air operational lifetime of 5600 h. For the light-emission device of the future, it is however critical that the encapsulation is flexible, and in our last study, we show that the use of multi-layer barrier can result in high-performance flexible LECs.
133

Self-heating control of edge emitting and vertical cavity surface emitting lasers

Zhang, Yu 01 January 2014 (has links)
Self-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This dissertation presents the control of self-heating of both edge emitting laser diodes and vertical cavity surface emitting lasers (VCSELs). For the 980nm high power edge emitting laser, asymmetric waveguide is used for low free carrier absorption loss. The waveguide and cladding materials are optimized for high injection efficiency. BeO heatsink is applied to spread the heat efficiently. Injection efficiency of 71% and internal loss of 0.3 cm-1 have been achieved. A total output power of 9.3 W is measured from 0.5cm long device at 14.5A injection current. To further reduce the internal loss, the development of 980nm quantum dot active region is studied. Threshold current density as low as 59A/cm2 is reached. For the VCSELs, oxide-free structure is used to solve the self-heating problem of oxide VCSELs. Removing the oxide layer and using AlAs in the DBRs leads to record low thermal resistance. Optimization of the DBRs leads to low resistance and low free carrier absorption. Power conversion efficiency higher than 50% is achieved. To further reduce device voltage and heat generation, the development of intracavity contacts devices is introduced.
134

Organic light emitting diodes: effects of anode treatments to device efficiency and stability

Lau, Tsz-wai, Raymond., 劉子偉. January 2001 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
135

Micro-and nano-light-emitting diode arrays

Ng, Wai-nap., 吳卉納. January 2008 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
136

Design, fabrication and characterization of organic thin filmdevices (OLEDs and OTFTs) based on Pt(II) complexes

張志泉, Cheung, Chi-chuen, Cecil. January 2007 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
137

A study on novel organic semiconductor devices: light-emitting diode and thin-film transistor

Cheng, Kam-ho., 鄭錦豪. January 2009 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
138

Electroluminescence in conjugated polymers

Greenham, Neil Clement January 1995 (has links)
No description available.
139

Rapid, High Sensitivity Capillary Separations for the Analysis of Biologically Active Species

Hapuarachchi, Suminda January 2007 (has links)
A series of rapid, high sensitivity capillary electrophoresis (CE) separation systems have been developed for the analysis of biological analytes and systems. A majority of the work has focused on development of novel instrumentation, in which new injection and detection strategies were investigated to improve the sensitivity of fast CE. A novel optical injection interface for capillary zone electrophoresis based upon the photophysical activation of caged dye attached to the target analyte was developed. The primary advantage of this approach is the lower background and background-associated noise resulting from reduced caged-fluorescein emission in conjunction with the high quantum yield of the resulting fluorescein. Improved detection limits were obtained compared to those observed in photobleaching-based optical gating. A primary drawback of photolytic optical gating CE is the lack of available caged-dye analogs with sufficiently fast reaction kinetics for online derivatization. To overcome this limitation, we have developed a chemical derivatization scheme for primary amines that couples the fast kinetic properties of o-phthaldialdehyde (OPA) with the photophysical properties of visible, high quantum yield, fluorescent dyes. The feasibility of this approach was evaluated by using an OPA/fluorescent thiol reaction, which was used to monitor neurotransmitter mixtures and proteins. The utilization of a high power ultraviolet light emitting diode for fluorescence detection in CE separations has been introduced to analyze a range of environmentally and biologically important compounds, including polyaromatic hydrocarbons and biogenic amines, such as neurotransmitters, amino acids and proteins, that have been derivatized with UV-excited fluorogenic labels. To understand cellular chemistry, it is imperative that single cells should be studied. This work was focused on developing CE based method to characterize the cellular uptake of TAT-EGFP. We demonstrated TAT mediated delivery of EGFP protein into HeLa cells and TAT-EGFP loaded single cell was analyzed by CE-LIF to determine the intracellular EGFP content. An application of CE-LIF for the determination of biogenic amine levels in the antennal lobes of the Manduca sexta is also explored and methods were developed to analyze a single antennal lobe dissected from moths. The lobe was digested and contents were labeled with the fluorogenic dye prior to CZE analysis.
140

New aspects of physics in conjugated systems

Wong-Kuen-Fat, John Erik January 1998 (has links)
No description available.

Page generated in 0.3577 seconds