Spelling suggestions: "subject:"ádám's conjecture"" "subject:"ádám's onjecture""
1 |
Ádám's Conjecture and Its GeneralizationsDobson, Edward T. (Edward Tauscher) 08 1900 (has links)
This paper examines idam's conjuecture and some of its generalizations. In terms of Adam's conjecture, we prove Alspach and Parson's results f or Zpq and ZP2. More generally, we prove Babai's characterization of the CI-property, Palfy's characterization of CI-groups, and Brand's result for Zpr for polynomial isomorphism's. We also prove for the first time a characterization of the CI-property for 1 SG, and prove that Zn is a CI-Pn-group where Pn is the group of permutation polynomials on Z,, and n is square free.
|
2 |
Ádám's Conjecture and Arc Reversal ProblemsSalas, Claudio D 01 June 2016 (has links)
A. Ádám conjectured that for any non-acyclic digraph D, there exists an arc whose reversal reduces the total number of cycles in D. In this thesis we characterize and identify structure common to all digraphs for which Ádám's conjecture holds. We investigate quasi-acyclic digraphs and verify that Ádám's conjecture holds for such digraphs. We develop the notions of arc-cycle transversals and reversal sets to classify and quantify this structure. It is known that Ádám's conjecture does not hold for certain infinite families of digraphs. We provide constructions for such counterexamples to Ádám's conjecture. Finally, we address a conjecture of Reid [Rei84] that Ádám's conjecture is true for tournaments that are 3-arc-connected but not 4-arc-connected.
|
Page generated in 0.0597 seconds