• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of a polarizable interface for electrophoretic separation in a microfluidic device / Intégration d'une interface polarisable pour la séparation électrophorétique dans un dispositif microfluidique

Zhang, Qiongdi 17 December 2018 (has links)
L’électrophorèse est une technique puissante permettant de séparer des biomarqueurs présents dans les liquides biologiques.L’électrophorèse de zone libre transporte des molécules en milieu liquide sous l’influence de deux contributions : le flux électrophorétique et le flux électroosmotique (EOF). C’est ce dernier flux EOF qui permet d’optimiser la résolution analytique de la séparation et donc de simplifier le mélange avant sa détection. Notre équipe a développé un contrôle en temps réel de l’ EOF en intégrant une interface polarisable diélectrique dans un dispositif microfluidique. Le carbone amorphe azoté (CNx avec x=15%) a été choisi comme ce matériau.Comme le CNx ne peut pas être déposé directement sur un substrat de verre à cause de sa faible adhérence, deux matériaux différents ont été proposés comme couche d’accroche : le carbure de silicium (SiC) et le platine (Pt). Nous avons tout d’abord optimisé l’adhésion entre le film CNx et la couche d’accroche SiC par différentes procédures de fabrication. Cependant, en raison d’une faible adhérence, le film CNx s’est rapidement décollé en électrolyte liquide. Par contre, nous avons prouvé que certaines architectures hybrides incluant du Pt dans la couche d’accroche sont incroyablement robustes. Même après deux mois dans une solution millimolaire de KCl, le CNx adhérait toujours au verre sans aucune trace de délamination. Ce dispositif a fourni aussi une grande fenêtre de polarisabilité (de -1V à +1V). Nous avons enfin développé une architecture hybride « couche d’accroche isolée/couche électriquement polarisable/électrodes de grille enterrées/ polymère » afin d’éviter toute perte faradique dans l’électrolyte liquide ou vers les circuits conducteurs du dispositif. A l’issue de ces travaux, nous pensons être en mesure de proposer un composant fluidique complexe et robuste qui permet une modulation en temps réel de l’ EOF lors de migrations électrophorétiques. / Electrophoresis is currently an efficient way to separate precious biomarkers from complex mixtures. It takes place to transport molecules under two contributions: the electrophoretic flow and the electroosmotic flow (EOF). The latter allows to optimize the analytical resolution of the separation.Our team has developed a real-time dynamic control of the EOF by integrating a dielectric polarizable interface in the microfluidic device.Amorphous carbon nitride (CNx with x=15%) has dielectric properties and was chosen to be the polarizable interface. Since it cannot be deposited directly onto glass substrate, we have proposed and studied two different materials as the sticking underlayer: silicon carbide (SiC) and platinum (Pt).In the case of SiC, we have optimized the adhesion between CNx film and SiC underlayer through different fabrication procedures.However, due to poor adhesion, CNx film delaminated into liquid electrolyte quickly.Compared to SiC, Pt is a good sticking underlayerfor CNx. It was found out that even after two months in KCl solution, CNx still stuck robustly toPt. Meanwhile, the device provided a large windowof polarizability (from -1V to +1V). Finally, toavoid any faradic loss in the liquid electrolyte ortowards the conductive circuitry of the device, we have developed a sticking underlayer/electrically polarizable/polymeric hybrid architecture. This architecture appears to be the most robust existing polarizable interface for strong and long-term adhesion onto glass substrates.
2

Développement de méthodes de séparation des oligosaccharides de chitine et de chitosane par électrophorèse capillaire

Beaudoin, Marie-Ève January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channel / Etude de l'instabilité de l'interface entre deux fluides immiscibles sous un écoulement electro-osmotique dans un canal microfluidique

Mayur, Manik 09 December 2013 (has links)
Dans cette thèse, on a étudié l’évolution de l’interface par électro-osmose entre deux couches de fluides dans un canal microfluidique. Les applications de ce problème concernent le mélange et le transport, sans contact avec des actionneurs, de fluides en micro-canal. De nombreuses questions restent toutefois posées lorsque le champ est oscillant en temps, notamment vis à vis de la stabilité de l'interface entre les deux fluides. Une analyse de stabilité linéaire basée sur une perturbation à l’interface a été réalisée pour un film mince d'électrolyte sous des champs électriques continus (constants) et alternatifs (dépendant du temps). Une analyse asymptotique avec une hypothèse de grande longueur d’onde des équations d'Orr-Sommerfeld a été appliquée afin de déterminer les seuils de stabilité paramétriques d'un film mince aqueux. L’accent a été mis sur les effets de la tension de surface, de la pression de disjonction pour l'interaction gaz-liquide-substrat, de l'amplitude et de la fréquence du champ électrique appliqué, ainsi que du potentiel zêta du substrat et de la surface libre. Une analyse comparative des profils de vitesse de l’état de base avec et sans contraintes de Maxwell à l’interface, a montré que les gradients de vitesse étaient importants à l'interface liquide-liquide avec les contraintes de Maxwell. De tels gradients sont essentiels à l'instabilité interfaciale sous l’action d’un champ électrique périodique car ils peuvent atténuer ou amplifier les ondes à l’interface. Parallèlement, un dispositif expérimental a été conçu et monté afin de caractériser l’écoulement électroosmotique dans un micro-canal rectangulaire. Avec l'aide d'une analyse PTV (« Particle Tracking Velocimetry »), les distributions de vitesse ont été obtenues et comparées aux prédictions théoriques. Cette comparaison a permis d’estimer le potentiel zêta du PDMS utilisé, valeur conforme à la valeur indiquée dans la littérature. / Since the past decade, use of electro-osmotic flow (EOF) as an alternative flow mechanism in microdevices is becoming more popular due to its less bulky and low maintenance system design. However, one of the biggest shortcomings for its usage in mainstream applications is that it requires the concerned liquid to be electrically conductive. One idea can be to use the flow of conductive fluids to transport non-conductive liquids passively via interfacial shear transfer. Such an idea can has numerous applications in a wide range of fields like bio-chemical processing (e.g. lab-on-a-chip reactors, mixers, etc.), to oil extraction from porous rock formations. One of the significant characteristics of micro-scale flows is high surface to volume ratio, which significantly highlights the role of multi-phase interfaces in such dynamics. The presence of a fluid-fluid interface in an EOF necessitates the characterization of the parameters responsible for hydrodynamic instability of such systems. The present work focuses on the role of steady and time-dependent electric stress (Maxwell stress), capillary force and disjoining pressure on fluid-fluid interfacial instability. A linear stability analysis of interfacial perturbation was performed for a thin film of electrolyte under DC and AC electric fields. Through long wave asymptotic analysis of the Orr-Sommerfeld equations, parametric stability thresholds of a thin aqueous film explored. Further, a set of experiments were performed in order to characterize the EOF in a rectangular microchannel. With the help of a Particle Tracking Velocimetry analysis, velocity distributions were obtained which agreed well to the theoretical values. This was further used to estimate PDMS zeta potential, which was found to be within the reported values in the existing literature. Liquid-liquid interfacial deformation was also explored under a time-periodic EOF and a wide range of the magnitudes of capillary force, and diffusive and convective transport.

Page generated in 0.0478 seconds