Spelling suggestions: "subject:"σύνολο"" "subject:"σύνορα""
1 |
Επί του συνόρου των δισδιάστατων συμπλόκωνΒροντάκης, Εμμανουήλ 14 December 2009 (has links)
Η παρούσα διατριβή αφορά στη μελέτη του συνόρου υπερβολικών δισδιάστατων πολυέδρων. Οι χώροι οι οποίοι μελετώνται κατασκευάζονται κολλώντας υπερβολικά τρίγωνα τα οποία έχουν 2 τουλάχιστον κορυφές στο άπειρο. Οι συγκολλήσεις γίνονται με ισομετρίες κατά μήκος των πλευρών των τριγώνων και οι χώροι οι οποίοι προκύπτουν εφοδιάζονται φυσιολογικά με μία γεωμετρία η οποία έχει ομοιότητες με την γεωμετρία των υπερβολικών πολλαπλοτήτων.
Αρχικά μελετάμε τις βασικές ιδιότητες των δισδιάστατων ιδεωδών πολυέδρων και αποδεικνύουμε ότι: «Για κάθε δύο σημεία του συνόρου του καθολικού καλύμματος του χώρου που κατασκευάζουμε, υπάρχει άπειρο πλήθος υποχώρων του συνόρου ομοιομορφικών με το οι οποίοι περιέχουν τα σημεία αυτά».
Στη συνέχεια, για μια ειδική κλάση πολυέδρων που κατασκευάζουμε κολλώντας με ισομετρίες κατά μήκος των πλευρών τους πεπερασμένα υπερβολικά τρίγωνα τα οποία έχουν δύο κορυφές στο άπειρο, αποδεικνύουμε επιπλέον ότι: «το σύνορο του καθολικού καλύμματος του χώρου που κατασκευάζουμε είναι τοπικά συνεκτικό κατά τόξα».
Τέλος, στην τρίτη ενότητα δίδουμε μια τοπολογική περιγραφή του συνόρου των ιδεωδών πολυέδρων διάστασης 2. / The present work is related to the study of the visual boundary of hyperbolic two dimensional simplicial complexes. We construct (and study) spaces by gluing hyperbolic triangles with at least two vertices at infinity. We glue the triangles by isometries along their sides and we study the derived spaces.
In the first chapter it is proved that for every two points in the visual boundary of the universal covering of a two dimensional ideal polyhedron, there is an infinity of paths joining them.
In the second chapter, a class of hyperbolic two dimensional complexes X is defined. Is is shown that the limit set of the action of π1(X) on the universal covering of X, is equal to the visual boundary and also that the visual boundary is path connected and locally path connected.
Finally, in the third chapter a kind of Sierpinski set is described which is homeomorphic to the visual boundary of certain ideal polyhedra.
|
2 |
Ελλειπτικές εξισώσεις με υπερκρίσιμο εκθέτη σε συμπαγείς πολλαπλότητες με σύνοροΛαμπρόπουλος, Νίκος 30 July 2007 (has links)
Η παρούσα διατριβή ερευνητικά εντάσσεται στην περιοχή της Μη Γραμμικής Ανάλυσης και ειδικότερα στην επίλυση Μη Γραμμικών Ελλειπτικών Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.) με υπερκρίσιμο εκθέτη. Η μη γραμμικότητα δεν επιτρέπει την επίλυση των εξισώσεων αυτών χρησιμοποιώντας τις συμπαγείς εμφυτεύσεις. Αξιοποιώντας τις ιδιότητες συμμετρίας που παρουσιάζει η πολλαπλότητα, αφενός παρακάμπτουμε το εμπόδιο αυτό και αφετέρου επιτυγχάνουμε να επιλύσουμε εξισώσεις αυτού του τύπου με υπερκρίσιμο εκθέτη. Στο πρώτο μέρος της Διατριβής υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο στον στερεό τόρο, μελετάμε το φαινόμενο της συμπύκνωσης και επιλύουμε τα προβλήματα (P1) και (P2).
Στο δεύτερο μέρος υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο σε μια λεία, συμπαγή, n-διάστατη, n\geq 3, πολλαπλότητα Riemann (M,g) με σύνορο, που είναι αναλλοίωτη από τη δράση μιας οποιασδήποτε συμπαγούς υποομάδας G της ομάδας των ισομετριών Is(M,g) της Μ και της οποίας όλες οι G-τροχιές έχουν άπειρο πληθάριθμο και κάνουμε μια σύντομη παρουσίαση των λύσεων των προβλημάτων (P3) και (P4). / The present Thesis is incorporated in the research area of Nonlinear Analysis, especially solvability of Nonlinear Elliptic PDE’s with supercritical exponent.The nonlinear nature of the equations makes it impossible to be solved by means of compact imbeddings. Taking advantage of the symmetry properties of the manifold we overcome the obstacle as well as we succeed in solving equations of this type possessing supercritical exponent. In the first part of the Thesis we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on the solid torus, we study the phenomenon of concentration and solve problems (P1) and (P2).In the second part we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on a smooth, compact, n−dimensional Riemannian manifold (M, g), n _ 3, with boundary, which is invariant under the action of a subgroup G of the isometry group Is(M, g) of M, the orbits of which have infinity cardinality. We also present brief solutions of problems (P3) and (P4).
|
Page generated in 0.0176 seconds