• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patient dose in common CT examinations / Δόση ασθενούς σε συνήθεις εξετάσεις υπολογιστικής τομογραφίας

Μάστορα, Σταματία 20 October 2010 (has links)
Recent developments in CT technology has resulted in a continuing expansion of CT practice. CT has become a major source of exposure in diagnostic radiology. Therefore, the European Union, in an ionizing radiation protection directive, has classified computed tomography as a high dose diagnostic procedure and has pointed to the need to reduce the dose to the patient. Efforts towards dose reduction in CT have been recommended by international organizations. The European Commission (EC) have recommended the setup and the implementation of CT dose guidance levels for the most frequent examinations to promote strategies for the optimization of CT doses. These dose guidance levels should be derived using data from a wide scale survey. Therefore, it is of great interest whether there are dose quantities whose values are easy to obtain, which can correctly reflect the patient dose and allow assessment of the risk associated with the CT examination. The most widely used CT Dose Quantity is the computed tomography dose index (CTDI). Another important dose quantity is the Dose Length Product (DLP), which includes the patient, or the phantom volume irradiated during a complex examination. The main purpose of this study is the measurement of CTDI and DLP during the most frequent CT examinations at the University Hospital of Patras. Also scan lengths used for the same type of examinations will be monitored. For the same types of examinations effective doses will be calculated. Four CT examination was selected because of their frequency, Routine Head, Routine Chest, Routine Abdomen and Cervical Spine. The protocols of these exams were compared with the European Commission’s recommendations. Data were collected from 120 patients, 30 for each examination. Data on the scanning parameters and the patient dose were selected from the CT scanner, a GE LightSpeed 16. Moreover, data were collected about the sex, the age and the weight of the patient undergone the examination. The mean values of CTDIw, DLP and Effective Dose were calculated for each protocol and were compared with the recommendations of European Commission. Moreover, an evaluation of the dose indication of the CT scanner was made. Using a head and a body CT Dose phantom made by PMMA, an ionization chamber and an electrometer, the CTDI was measured for each examination protocol. These values were compared with the indications of CT and the correspondent values published by ImPACT. / Τα τελευταία χρόνια έχει παρατηρηθεί επέκταση της χρήσης του Υπολογιστικού Τομογράφου(ΥΤ). Ο ΥΤ είναι η κυριότερη πηγή ακτινοβολίας ανάμεσα σε όλες τις ακτινοδιαγνωστικές εξετάσεις. Για αυτό το λόγο η Ευρωπαϊκή Ένωση, σε μια κατευθυντήρια οδηγία για την προστασία από ιοντίζουσες ακτινοβολίες σημείωσε την ανάγκη μείωσης της δόσης στον ασθενή. Προσπάθειες για τη μείωση της δόσης από ΥΤ έχουν γίνει από διεθνείς οργανισμούς, οι οποίοι έχουν προτείνει τον καθορισμό επιπέδων αναφοράς για τις πιο συχνές εξετάσεις ΥΤ με σκοπό την ανάπτυξη στρατηγικών για τη μείωση της δόσης από ΥΤ. Τα επίπεδα αναφοράς πρέπει να προκύπτουν από έρευνες μεγάλης κλίμακας. Για αυτό το λόγο οι ποσότητες της δόσης που χρησιμοποιούνται πρέπει να είναι εύκολο να υπολογιστούν, αλλά να αντανακλούν σωστά τη δόση στον ασθενή και να επιτρέπουν τον υπολογισμό του κινδύνου που προέρχεται από τη χρήση της ακτινοβολίας. Η ποσότητα που χρησιμοποιείται ευρέως στη Δοσιμετρία από ΥΤ είναι ο Computed Tomography Dose Index, CTDI, το Γινόμενο Δόσης Μήκους (Dose Length Product, DLP) το οποίο συνυπολογίζει τον όγκο του ασθενή ή του ομοιώματος που έχει ακτινοβοληθεί κατά τη διάρκεια μιας πλήρους εξέτασης. Ο κύριος σκοπός αυτής της εργασίας είναι η μέτρηση του CTDI και του DLP για τις πιο συχνές εξετάσεις ΥΤ στο Πανεπιστημιακό Γενικό Νοσοκομείο Πατρών. Ακόμα υπολογίζεται το μέσο μήκος εξέτασης και η μέση ενεργός δόση για κάθε εξέταση. Επίσης ελέγχεται η αξιοπιστία των ενδείξεων της δόσης στην κονσόλα του ΥΤ. Επιλέχτηκαν τέσσερις εξετάσεις ΥΤ λόγω της συχνότητας τους, αυτές είναι: η εξέταση κεφαλής, θώρακα, κοιλίας και αυχένα. Τα πρωτόκολλα αυτών των εξετάσεων συγκρίνονται με τις συστάσεις της European Commission. Συνολικά συλλέχτηκαν δεδομένα από 120 ασθενείς, 30 για κάθε εξέταση. Δεδομένα που αφορούσαν τις παραμέτρους της σάρωσης κάθε ασθενή συλλέχτηκαν από την κονσόλα του ΥΤ, ο οποίος είναι ένας GE LightSpeed 16. Επιπλέον συλλέχτηκαν δεδομένα σχετικά με το φύλλο, την ηλικία και το βάρος του ασθενή που υποβλήθηκε σε εξέταση. Υπολογίστηκε η μέση τιμή του CTDIw, του DLP και της ενεργού δόσης για κάθε πρωτόκολλο και συγκρίθηκαν με τα όρια που προτείνει η European Commission σαν DRL. Επιπλέον, έγινε αξιολόγηση της τιμής της δόσης όπως αυτή εμφανίζεται στην κονσόλα του ΥΤ. Για αυτό το λόγο έγιναν μετρήσεις σε ένα ομοίωμα κεφαλής και σε ένα ομοίωμα σώματος κατάλληλο για την δοσιμετρία ΥΤ. Επιπλέον, χρησιμοποιήθηκε ένας θάλαμος ιονισμού και ένα ηλεκτρόμετρο. Έτσι μετρήθηκε η τιμή του CTDI για κάθε πρωτόκολλο χρησιμοποιώντας τις ίδιες παραμέτρους σάρωσης. Οι τιμές που μετρήθηκαν συγκρίθηκαν με τις ενδείξεις του ΥΤ αλλά και με τις τιμές που έχει δημοσιεύσει το Imaging Performance Assessment of CT scanners (ImPACT).
2

Empirical pharmacokinetic models in breast MRI / Εμπειρικά φαρμακοκινητικά μοντέλα στην απεικόνιση μαστού με MRI

Λιάσκος, Μελέτιος 07 June 2013 (has links)
The purpose of this study is the comparison of methods of image enhancement kinetics in breast MRI tomography, according to 4 models, that analyze dynamic image series. Specifically, the following models have been implemented: (a) the Kuhl empirical approach, (b) a 3-parameter empirical model, (c) the 3 parameter mathematical model of Jansen and (d) the 5-parameter mathematical model of Fan. These models have been tested in a classification task of breast lesions (benignity/malignancy), using a k-ΝΝ (k=3 and k=7) classifier. A case sample of 29 benign and 49 malignant lesions, originating from 1.5T system, were analyzed. A graphical user interface has been implemented, intended as a visual aid to guide the identification of the location of the analyzing Region of Interest (ROI) of the lesion. In this study, the enhancement kinetic features of the two empirical models, as well as the primary and the secondary kinetic features of the two mathematical models were calculated. For proper ROI selection, 2 feature maps (a) the initial enhancement and (b) the 3 Time Point (3TP) kinetic map (Hauth et al. 2006), were utilized as pre-processing step. To evaluate the classification performance, indices such as sensitivity, specificity and accuracy were utilized. Employing the initial enhancement map, classification performance obtained for Kuhl empirical approach (Kuhl et al. 1999), the 3-parameter empirical model, the mathematical model of Jansen et al (Jansen et al. 2008) and the mathematical model of Fan (Fan et al. 2004, 2007) was: (0.87, 0.34, 67.9%), (0.81, 0.65, 70.5%), (0.85, 0.55, 70.5%) and (0.81, 0.58, 67.9%), respectively. Classification results employing the 3TP kinetic map for the Kuhl empirical approach (Kuhl 1999), 3-parameter empirical model, the mathematical model of Jansen and the mathematical model of Fan were: (0.95, 0.58, 82.0%), (0.95, 0.82, 84.6%), (0.85, 0.68, 78.2%) and (0.93, 0.79, 79.4%), respectively. In conclusion, the 3TP kinetic contributed in the proper location of the analyzing ROI and subsequently in the improved classification of malignant from benign lesions for all enhancement kinetic models studied. / Σκοπός της παρούσας εργασίας είναι η σύγκριση μεταξύ μεθόδων ανάλυσης της κινητικής του σκιαγραφικού στην μαγνητική τομογραφία μαστού, σύμφωνα με 4 μοντέλα ανάλυσης που αξιοποιούν τα απεικονιστικά δεδομένα δυναμικών ακολουθιών εικόνων. Συγκεκριμένα, υλοποιήθηκαν: (α) η εμπειρική προσέγγιση Kuhl et al. (Kuhl et al. 1999), η οποία χρησιμοποιεί 1 ποσοτικό δείκτη της αρχικής ενίσχυσης του σήματος και ποιοτική εκτίμηση της κινητικής του σκιαγραφικού στη φάση έκπλυσης, (β) ένα εμπειρικό μοντέλο 3 ποσοτικών δεικτών που ποσοτικοποιούν την πρόσληψη και έκπλυση, (γ) το 3-παραμετρικό εμπειρικό μαθητικό φαρμακοκινητικό μοντέλο των Jansen et al. (Jansen 2008), (δ) το 5-παραμετρικό εμπειρικό φαρμακοκινητικό μαθητικό μοντέλο των Fan et al. (Fan et al. 2004, 2007), στα πλαίσια ταξινόμησης αλλοιώσεων του μαστού (καλοήθεια/κακοήθεια) με χρήση ταξινομητή k-ΝΝ (k=3 και k=7). Μελετήθηκαν 29 καλοήθεις και 49 κακοήθεις αλλοιώσεις, και οι λήψεις των εικόνων έγιναν από 1.5 T μαγνητικό τομογράφο. Υλοποιήθηκε γραφικό περιβάλλον διεπαφής (Graphical User Interface-GUI), προτεινόμενο ως εργαλείο υποβοήθησης για την επιλογή της τοποθέτησης της περιοχής ενδιαφέροντος για την αξιολόγηση των κινητικών χαρακτηριστικών της αλλοίωσης. Στα πλαίσια της παρούσας μελέτης, υπολογίστηκαν τα κινητικά χαρακτηριστικά για τα δύο εμπειρικά μοντέλα καθώς και τα πρωτεύοντα και δευτερεύοντα χαρακτηριστικά για τα μαθηματικά μοντέλα. Για την επιλογή της περιοχής ενδιαφέροντος υλοποιήθηκαν: (α) ένας κινητικός χάρτης πρώιμης ενίσχυσης σήματος, (β) ο κινητικός χάρτης 3TP (Hauth et al. 2006), οποίος εκφράζει τη συνολική κινητική του σκιαγραφικού. Για την αξιολόγηση της απόδοσης ταξινόμησης (διαφοροποίηση καλοήθειας/κακοήθειας) χρησιμοποιήθηκαν οι δείκτες ευαισθησία, ειδικότητα και ακρίβεια. Με χρήση του χάρτη πρώιμης ενίσχυσης για την επιλογή της περιοχής ενδιαφέροντος, η απόδοση ταξινόμησης, του εμπειρικού μοντέλου Kuhl et al. (1999), του εμπειρικού μοντέλου των 3 παραμέτρων, του μαθηματικού μοντέλου Jansen και του μαθηματικού μοντέλο Fan (Fan et al. 2004, 2007) ήταν: (0.87, 0.34, 67.9%), (0.81, 0.65, 70.5%), (0.85, 0.55, 70.5%) και (0.81, 0.58, 67.9%), αντιστοίχως. Με χρήση του κινητικού χάρτη 3TP η απόδοση ταξινόμησης του εμπειρικού μοντέλου Kuhl (Kuhl et al. 1999), του εμπειρικού μοντέλου των 3 παραμέτρων, του μαθηματικού φαρμακοκινητικού μοντέλου Jansen et al. (Jansen et al. 2008) και του μαθηματικού φαρμακοκινητικού μοντέλου Fan (Fan et al. 2004, 2007) ήταν: (0.95, 0.58, 82.0%), (0.95, 0.82, 84.6%), (0.85, 0.68, 78.2%) και (0.93, 0.79, 79.4%), αντιστοίχως. Συμπερασματικά, χρήση του κινητικού χάρτη 3TP συνεισφέρει σε ορθότερη επιλογή της θέσης της περιοχής ενδιαφέροντος προς ανάλυση, βελτιώνοντας αποτελέσματα της ταξινόμησης των κακοηθών από καλοήθεις αλλοιώσεις για όλα τα μοντέλα κινητικής σκιαγραφικού που μελετήθηκαν.

Page generated in 0.0405 seconds