• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental study of bubble growth in Stromboli basalt melts at 1 atmosphere

Bai, Liping. January 2007 (has links)
In order to investigate bubble formation and growth at 1 atmosphere, degassing experiments using a Stromboli basalt with dissolved H2O or H2O + CO2 were performed in a custom furnace on a beamline at the Advanced Photon Source. The glasses were synthesized at 1250°C and 1000 MPa, with ~3.0 wt%, ~5.0 wt%, or ~7.0 wt% H2O or with mixtures of H2O + CO2, ~3.0 wt% H2O and ~440 ppm CO2, ~5.0 wt% H2O and 880 ppm CO2, ~7.0 wt% H2O and ~1480 ppm CO2, then heated on the beamline while recording the bubble growth. The 3D bubble size distributions in the quenched samples were then studied with synchrotron X-ray microtomography. / The experimental results show that bubble nucleation and growth are volatile-concentration dependent. Bubbles can easily nucleate in melts initially containing high volatile concentrations. CO2 has no significant effect on bubble formation and growth because of low CO2 concentrations. Multiple nucleation events occur in most of these degassing samples, and they are more pronounced in more supersaturated melts. Bubble growth is initially controlled by viscosity near glass transition temperatures and by diffusion at higher temperatures where melt viscous relaxation occurs rapidly. Bubble foam forms when bubbles are highly connected due to coalescence, and bubbles begin pop, 10 to 20 seconds after the foam is developed. The degree of bubble coalescence increases with time, and bubble coalescence can significantly change the bubble size distribution. Bubble size distributions follow power-law relations at vesicularities of 1.0% to 65%, and bubble size distributions evolve from power-law relations to exponential relations at vesicularities of 65% to 83%. This evolution is associated with the change from far-from-equilibrium degassing to near-equilibrium degassing. / The experimental results imply that during basaltic eruptions both far-from-equilibrium degassing and near-equilibrium degassing can occur. The far-from-equilibrium degassing generally generates the power-law bubble size distributions whereas the near-equilibrium degassing produces exponential bubble size distributions Bubbles begin to pop when the vesicularities attain 65% to 83%. Bubble expansion in the foam possibly accounts for the mechanism of magma fragmentation. / Afin d'étudier la formation et la croissance de bulle; sous pression d'une atmosphère, desexpériences de dégazage sur un basalte de Stromboli, avec HiO ou H20 + CO2 dissouts,ont été exécutées dans un four pilote sous rayonnement synchrotron à l'APS (AdvancedPhoton Source). Les verres ont été synthétisés à une température de 1250°C et unepression de 1000 MPa, avec des teneurs en eau dissoute de ~ 3.0, ~ 5.0 ou ~ 7.0% (enpoids), et des mélanges H20 + C02 à teneurs de ~ 3.0% H20 (en poids) et 440 ppm CO2,~ 5% H20 et 880 ppm CO2, et de ~ 7.0% H20 et 1480 ppm CO2. La croissance des bullesest enregistrée pendant le chauffage du mélange en utilisant le rayonnement synchrotron.Les distributions tridimensionnelles de la taille des bulles dans les échantillons trempésont été étudiées par microtomographie à rayon X synchrotron.
2

Strombolian eruption dynamics from thermal (FLIR) video imagery

Patrick, Matthew R. January 2005 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 204-228).
3

On the origin of seismic signals recorded on Stromboli volcano

Braun, Thomas January 1900 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in dt. Sprache.
4

Experimental study of bubble growth in Stromboli basalt melts at 1 atmosphere

Bai, Liping January 2007 (has links)
No description available.
5

Ascension et dégazage des magmas basaltiques : approche expérimentale / Basaltic magma ascent and degassing : experimental approach

Le Gall, Nolwenn 06 November 2015 (has links)
Afin de parvenir à une meilleure compréhension de la dynamique d’ascension et d’éruption des magmas basaltiques, nous avons réalisé des expériences de décompression à haute pression (200–25 MPa) et haute température (1200°C) spécifiquement orientées pour documenter la nucléation des bulles de gaz ; ce processus, qui constitue la première étape du dégazage magmatique, conditionne l’évolution de la phase gazeuse (force motrice des éruptions explosives) dans le conduit volcanique. Quatre principaux ensembles d’expériences ont été menés afin de mieux comprendre le rôle des volatils majeurs (H2O, CO2, S), ainsi que les effets de la vitesse d’ascension et de la présence de cristaux sur la cinétique de vésiculation (nucléation, croissance, coalescence) des bulles dans les magmas basaltiques. L’objectif est de comprendre les mécanismes qui contrôlent les caractéristiques texturales (nombre, taille, forme des bulles) et chimiques (teneur en volatils dissous, composition des gaz) des produits naturels et de les approcher expérimentalement. Dans ce sens, les verres expérimentaux ont été analysés avant et après décompression sur le plan textural (microtomographie par rayons X, MEB) et chimique (FTIR, microsonde électronique). Nos résultats démontrent une forte influence du CO2 sur les processus ainsi que sur le mode (équilibre vs. déséquilibre) de dégazage des magmas basaltiques, en lien avec des différences de solubilité et de diffusivité entre les espèces volatiles. Nos données, obtenues dans des conditions voisines des conditions naturelles, ont des implications volcanologiques pour l’interprétation des textures de bulles et des mesures de gaz en sortie de conduit, ainsi que, plus spécifiquement, pour la dynamique des éruptions paroxysmales au Stromboli. / For a better understanding of the dynamics of ascent and eruption of basaltic magmas, we have performed high pressure (200–25 MPa) and high temperature (1200°C) decompression experiments specifically oriented to document gas bubble nucleation processes. Bubble nucleation occurs first during magma degassing and, so, it is critical to understand bubble nucleation processes to constrain the evolution of the gas phase (which is the driving force of explosive eruptions) in the volcanic conduit. Four main sets of experiments were conducted to better assess the role of the major volatiles (H2O, CO2, S), as well as the effects of ascent rate and crystals, on bubble vesiculation (nucleation, growth, coalescence) kinetics in basaltic magmas. The aim of the study is to understand the mechanisms which control the textural (number, size, shape of bubbles) and the chemical (dissolved volatile concentrations, gas composition) characteristics of natural products, and also to approach them experimentally. In this way, experimental melts, before and after decompression, were analysed texturally (by X-ray microtomography and MEB) and chemically (by FTIR and electron microprobe). Our results demonstrate a strong influence of CO2 on degassing mode (equilibrium vs. disequilibrium) and mechanisms, which are shown to be controlled by differences in solubility and diffusivity between the main volatile species. Finally, our data, obtained under conditions closely approaching natural eruptions, have volcanological implications for the interpretation of bubble textures and gas measurements, as well as, more specifically, for the dynamics of Strombolian paroxysms.
6

Simulation expérimentale des conditions pré-éruptives des "ponces jaunes" Stromboli - Italie

Di Carlo, Ida 12 January 2005 (has links) (PDF)
Le Stromboli est caractérisé par une activité persistente. Le risque associé avec l'activité volcanique au Stromboli comprend des émissions gazeuses et surtout les éruptions majeures qui peuvent provoquer aussi quelquefois des tsunamis. Le Stromboli est activement surveillé par les groupes de recherche et les institutions italiennes. Mes résultats présentent un modèle expérimental de l'ascension du magma à travers le volcan. La connaissance des propriétés physico - chimiques du magma peut permettre une interprétation à long terme du signal géophysique et peut aider sur la connaissance du comportement actuel du volcan.<br /><br />L'activité normale du Stromboli est interrompue par des émissions de coulées de lave ou par des explosions plus énergiques. Les explosions plus violentes sont partagées entre explosions majeures (1-2 par années) et paroxysmiques (un évènement tous les 5-15 ans).<br /><br />La plupart des travaux et des modèles dynamiques réalisés sur l'activité de Stromboli se sont focalisés sur l' activité normale du volcan, mais l'étude des phases paroxysmiques (l'activité la moins fréquente) peut donner informations des importants sur l'activité persistente.<br /><br />Ces phases paroxysmiques permettent d'approcher les processus de mélange, de cristallisation et de dégazage le système volcanique. Pendant les explosions majeures et les paroxysmes, est émis un produit particulier constitué par une ponce jaune mélangée à une scorie noire. La ponce jaune est pauvre en cristaux (< 10 % vol), très vésiculée et représente le magma le plus primitif jamais émis a Stromboli; la scorie noire est, au contraire, riche en cristaux (~50 vol %), plutôt dense, très peu vésiculée et représente le produit de l'activité normale du Stromboli. Les deux parties sont très différentes texturalement, mais elles ont une composition de roche totale très similaire (entre HKCA et SHO). Elles montrent seulement des petites variations dans les teneurs de éléments majeurs et en traces. Les différences plus accentuées concernent les teneurs en volatils (H2O-CO2-S). L'objectif de ma recherche était de : (i) caractériser la région source du magmatisme (ii) donner des informations sur les conditions P-T-aH2O pendant la montée de la ponce jaune, (iii) suivre le parcours qui transforme en scorie noire la ponce jaune à travers sa montée rapide dans le niveau plus superficiel du Stromboli.<br /><br />Les volatils jouent le rôle principal dans les relations de phases soit dans les propriétés chimiques soit dans les propriétés physiques du magma. Deux séries d'expériences ont été réalisées, à partir d'une ponce jaune éruptée dans un période postérieure à 1600 AD et antérieure à 800 AD: une section isobarique – 4 kb - entre 1175°C et 1150°C et une section isotherme – 1100°C – entre 400MPa et 50 MPa à teneur en eau variable (de la sou-saturation à la saturation) ont été réalisées. Quelques expériences ont étés réalisées pour vérifier la nature primitive de notre composition et quelques expériences ont été réalisées en présence de volatils mixtes (H2O +/- CO2 +/- S).<br /><br />Les résultats montrent que la ponce jaune, utilisée comme matériel de départ est un magma primaire, en équilibre avec la clinopyroxènite-source à P-T de genèse. La première phase à cristalliser est le clinopyroxène, suivi de l'olivine. Le pyroxène joue un rôle très important à pression élevée (4kb). Le plagioclase, au contraire, est la phase prépondérante à basse pression. Il a été possible d'établir un géo-baromètre expérimental à partir du rapport ol/cpx. En appliquant cette corrélation expérimentale entre pression et rapport ol/cpx aux magmas naturels, on peut déduire une pression de cristallisation de 3.7-2.9 kb pour la ponce et 1.2-0.6 kb pour la scorie. Les données expérimentales montrent en outre une claire corrélation entre le teneur en Ca dans le pyroxène et le teneur en eau du verre: on peut donc utiliser cette corrélation comme un géo-hygromètre dans un assemblage à trois phases, pour en déduire le teneur en eau de échantillons naturels. Le dernier résultat important concernes les données empiriques de solubilité de H2O-CO2 qui sont en désaccord avec les modèles thermodynamiques normalement utilisés qui surestiment la pression de saturation de presque 50%.
7

Magmatic S and Cl abundances at Stromboli, Italy and their role in the formation of vesicle-hosted metal alloys /

Baxter, Nichelle. January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geological Sciences, 2008. / Includes bibliographical references (p. 50-52).
8

Magma injections and destabilization of basaltic volcanoes : A numerical study : Application to La Reunion (Indian ocean, France) and Stromboli (Tyrrhenian sea, Italy) / Injections magamatiques et destabilisation des volcans basaltiques : étude numérique : Applications à la Réunion (Océan Indien, France) et Stroboli (mer Tyrrhénienne, Italie)

Catry, Thibault 23 May 2011 (has links)
L'évolution de la majorité des volcans basaltiques est marquée par des phénomènes récurrents d'instabilité latérale. De nombreux facteurs d'instabilité, impliqués dans des déstabilisations à long terme ou des effondrements de flancs instantanés, ont été recensés depuis l'événement majeur qui a frappé le Mont Saint-Helens en 1980. Cependant, le rôle de ces facteurs sur la stabilité mécanique des édifices est mal contraint dans la mesure où les glissements de flancs résultent en général de plusieurs causes simultanées. Notre étude se concentre sur une comparaison des caractéristiques morphologiques et structurales de deux systèmes basaltiques, La Réunion (Océan Indien, France) et Stromboli (Mer Tyrrhénienne, Italie). Nous avons montré que, bien qu'ayant des volumes et des contextes géodynamiques très différents, les systèmes sont tous deux caractérisés par une activité intrusive intense le long de rift zones et ont subi des déstabilisations latérales récurrentes durant leur évolution. Parmi les facteurs d'instabilité, les exemples de La Réunion et de Stromboli soulignent l'influence majeure des complexes intrusifs dans la croissance et le démantèlement des volcans, comme le prouvent les études de terrain et la surveillance des ces volcans actifs. Les modèles classiques considèrent que le processus d'instabilité latérale en domaine volcanique résulte de la mise en place d'une ou plusieurs intrusions verticales, entrainant des mouvements de flancs le long d'une surface de glissement pré-existante. De nouvelles données de terrain obtenues au Piton des Neiges (La Réunion), ainsi que des données de littérature sur d'autres édifices, ont permis de mettre en évidence le rôle des intrusions sub-horizontales dans les déstabilisations de flancs et de caractériser la géométrie des intrusions sub-verticales et sub-horizontales au sein des volcans basaltiques. Cette étude compare les résultats de la modélisation numérique des champs de déplacements de surface crées par la mise en place d'intrusions magmatiques à faible / fort pendage dans les édifices basaltiques, grâce à une méthode d'éléments frontières mixte (Mixed Boundary Element Method), dans le but de déterminer le comportement mécanique d'un édifice soumis à des injections magmatiques sous différents champs de contraintes. Les résultats de cette étude montrent qu'un champ de contraintes anisotrope favorise le glissement le long des intrusions, généré par la contrainte cisaillante co-intrusive, à l'origine de déplacements à l'échelle du flanc de l'édifice. Ces déplacements de grande ampleur, préférentiellement liés à des intrusions subhorizontales, peuvent probablement déclencher des grands glissements latéraux si leur amplitude dépasse le seuil de stabilité de l'édifice. L'application des résultats théoriques à des exemples réels de déformations enregistrées sur des volcans basaltiques (dont La Réunion et Stromboli, au cours de leurs crises éruptives de 2007) révèle que le modèle de déstabilisation associée à des intrusions sub-verticales est un mécanisme pouvant générer des effondrements de flancs sur des petits édifices à fortes pentes comme Stromboli. De plus, nos données de terrain et les résultats de modélisation confirment l'importance des intrusions sub-horizontales dans l'évolution morpho-structurale des grands édifices basaltiques à faibles pentes comme le Piton de la Fournaise (La Réunion), l'Etna ou le Kilauea, et plus particulièrement dans les instabilités de flancs pouvant causer des tsunamis dévastateurs. / Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.
9

Le terme source des panaches de téphras : applications radars aux volcans Etna et Stromboli (Italie) / The source term of tephra plumes : radar applications at Etna and Stromboli volcanoes (Italy)

Freret-Lorgeril, Valentin 23 November 2018 (has links)
Les panaches volcaniques de téphras constituent un des aléas volcaniques majeurs. Pour prévoir leur dispersion et les zones d'impacts de leurs retombées, des modèles numériques sont utilisés en opérationnel et basés sur des paramètres éruptifs, regroupés sous la notion de terme source, caractérisant l'émission des panaches. L'ensemble du terme source est cependant difficile à mesurer en temps réel. C'est pourquoi les modèles de dispersion sont souvent basés sur des scénarios d'éruptions passées et utilisent des lois empiriques reliant la hauteur des panaches avec les flux massiques à la source. Cependant, les résultats qui découlent de ces modèles sont peu contraints, moyennés sur la durée des éruptions, et souffrent de larges incertitudes. Dans cette optique, les radars Doppler, capables de sonder l'intérieur des colonnes éruptives avec des échelles spatio-temporelles fines, peuvent fournir des contraintes cruciales sur le terme source des panaches en temps réel. Ce travail de thèse traite des applications de radars volcanologiques dédiés, potentiellement transposables aux radars météorologiques communément utilisés, afin de fournir des paramètres éruptifs à la source des panaches de téphras en surveillance opérationnelle mais également pour contraindre la dynamique des colonnes éruptives et les charges internes des panaches et de leurs retombées. Une campagne de mesures au volcan Stromboli a permis de montrer les capacités d'un couplage innovant entre un disdromètre optique (Parsivel2) avec un nouveau radar Doppler à onde millimétrique (Mini-BASTA). Grâce à l'excellente résolution spatio-temporelle de Mini-BASTA (12,5 m et 1 s), des figures intermittentes de sédimentation ont été observées dans les retombées de panaches transitoires dilués. Observées également au disdromètre mesurant la vitesse et la taille des retombées, ces figures ont été reproduites en laboratoire grâce à un modèle analogique. Un modèle conceptuel de formation de thermiques de sédimentation inversés est proposé pour expliquer ces figures et implique que les processus menant à une sédimentation irrégulière typique des panaches soutenus et concentrés peuvent s'appliquer à des panaches dilués, y compris ceux issus d'éruptions Stromboliennes normales en régime transitoire. Ensuite, une caractérisation physique d'un grand nombre de particules de cendres échantillonnées à Stromboli a permis de valider les mesures de tailles et de vitesses terminales de chutes par disdromètre sur le terrain et en laboratoire, justifiant par ailleurs son utilisation opérationnelle. A partir de ces contraintes, une loi reliant les concentrations de cendres avec les facteurs de réflectivité calculés a pu être comparée aux mesures radar in situ. Les concentrations internes modale et maximale des panaches de Stromboli sont respectivement autour de 1 × 10-5 kg m-3 et 7,45 × 10-4 kg m-3, largement supérieures au seuil fixé pour la sécurité aérienne. Les concentrations en cendres des retombées s’étalent entre 1,87 × 10-8 - 2,42 × 10-6 kg m-3 avec un mode vers 4 × 10-7 kg m-3.Finalement, ce travail de thèse montre les applications opérationnelles du radar UHF VOLDORAD 2B dans le cadre de la surveillance de l'activité de l'Etna. Une méthodologie, applicable à tout radar Doppler, a été développée pour obtenir des flux de masse de téphras en temps réel à partir d’un proxy de masse, uniquement basé sur les vitesses d'éjection et puissances mesurées, calibré avec un modèle de colonne tenant compte de l'influence du vent sur les panaches. La gamme de flux trouvée pour 47 paroxysmes entre 2011 et 2015 s’étend de 2.96 × 104 à 3.26 × 106 kg s-1. A partir d’un autre modèle de colonne éruptive, Plume-MoM, les flux radar ont permis de modéliser des hauteurs des panaches de téphras émis lors de quatre paroxysmes de l'Etna cohérentes avec les observations faites en temps réel par imagerie visible et par radar en bande-X. (...) / Volcanic tephra plumes are one of the major volcanic hazards. To forecast their dispersion and the impact zones of their fallout, the numerical models used in operational monitoring are based on eruptive parameters, called the source term, characterizing the plume emission. Source term parameters are challenging to measure in real time. This is why dispersion models are often based on past eruptive scenarios and use empirical laws that relate plume heights to source mass fluxes. However, the model outputs are not well constrained, averaged over the eruption duration, and suffer from large uncertainties. In this topic, Doppler radars are capable of probing the interior of eruptive columns and plumes at high space-time resolution and can provide crucial constraints on the source term in real time. This thesis deals with applications in operational monitoring of dedicated volcanological radars, potentially transposable to most common meteorological radars, to provide eruptive parameters at the source of tephra plumes but also to constrain the dynamics and internal mass load of eruptive columns, volcanic plumes and their fallout.A measurement campaign at Stromboli volcano has shown the capabilities of an innovative coupling between an optical disdrometer (Parsivel2) and a new 3-mm wave Doppler radar (Mini-BASTA). Owing to its high spatio-temporal resolution (12.5 m and 1 s), intermittent sedimentation patterns were observed in the fallout of dilute transient plumes typical of normal strombolian activity. These features, also recorded with the disdrometer, measuring the particle settling speeds and sizes, were reproduced in the laboratory using an analog model. A conceptual model for the formation of reversed sedimentation thermals is proposed to explain these features. It implies that processes leading to irregular sedimentation typical of sustained concentrated strong plumes can be applied to dilute weak plumes, including those formed by normal transient Strombolian activity. Then, a physical characterization of a large number of ash particles sampled at Stromboli allowed the validation of particle size and terminal velocity measurements by the disdrometer in the field and in the laboratory, arguing in favor of its operational use. Then, a physical characterization of a large number of ash particles sampled at Stromboli allowed to validate the measurements of size and terminal velocity of falls by disdrometer in the field and in laboratory, justifying also its operational use. From these constraints, a law relating ash concentrations with calculated reflectivity factors was found and compared to in situ radar measurements inside ash plumes and fallout. The modal and maximum internal concentrations of Strombolian plumes are at about 1 × 10-5 kg m-3 and 7.5 × 10-4 kg m-3 respectively, well above the threshold for aviation safety. Ash concentrations in the fallout range from 1.9× 10-8 to 2.4 × 10-6 kg m-3 with a mode at about 4 × 10-7 kg m-3.Finally, this thesis work shows operational applications of the UHF VOLDORAD 2B radar for the monitoring of explosive activity at Etna. A methodology, applicable to any Doppler radar, has been developed to obtain tephra mass eruption rates in real time from a mass proxy, based only on measured ejection velocities and power, and calibrated with an eruptive column model taking crosswinds into account. Tephra mass fluxes found for 47 paroxysms between 2011 and 2015 range from 3 × 104 to over 3 × 106 kg s-1. Then, tephra plumes heights of four Etna paroxysms were simulated using the eruptive column model Plume-MoM from the radar-derived mass eruption rates and were found consistent with real-time observations made by visible imagery and by X-band radar. This last part demonstrates the capabilities of VOLDORAD 2B to provide quantitative input parameters for dispersion models in the case of future Etna paroxysms. (...)
10

On the origin of seismic signals recorded on Stromboli volcano / Untersuchung zur Ursache der auf dem Vulkan Stromboli registrierten seismischen Signale

Braun, Thomas January 2009 (has links) (PDF)
Hauptaufgabe der Vulkanseismologie ist die qualitative and quantitative Beschreibung einer oder mehrerer unbekannter seismischer Quellen, die sich in einer unbekannten Tiefe unter dem Vulkan befinden. Auch wenn viele Vulkane der Erde ähnliche Signalcharakteristiken aufweisen, war es bis heute nicht möglich, für Vulkane ein seismisches Standard-Quellmodell zu finden, analog dem Double- Couple in der Erdbebenseismologie. Kontinuierlich tätige Vulkane, wie z.B. Stromboli (Italien), stellen für den Vulkanseismologen ein ideales natürliches Feldlabor dar, diese Fragestellung zu untersuchen. Die vorliegende Arbeit untersucht auf Stromboli registrierte Explosionsbeben und vulkanischen Tremor in einem breiten Frequenzband und behandelt die Frage nach der Lage und dem Mechanismus der seismischen Quelle(n). Seismische und Infraschallmessungen von strombolischen Explosionsbeben zeigen, dass sich eine Hochfrequenz-Phase mit einer Geschwindigkeit von etwa 330 m/s fortbewegt. Die seismische Quelle kann durch eine Explosion am oberen Ende der Magmasäule erklärt werden, die durch aufsteigende Gasblasen verursacht wird. Sowohl die seismische P-Welle, als auch die Luftwelle werden zum gleichen Zeitpunkt an ein und demselben Ort generiert. Die verschiedenen Laufwege und Geschwindigkeiten der seismischen und der Luftwelle resultieren in einem Laufzeitunterschied dt, der zur Bestimmung des Magmenstandes und der Schallgeschwindigkeit in der Eruptionss¨aule im Schlotinnern genutzt werden kann. In Kraternähe installierte Stationen zeigen, dass Infraschall- und seismische Messungen des kurzperiodischen Tremors (> 1 Hz) den gleichen Frequenzgehalt und ähnliche Fluktuationen der seismischen Energie aufweisen. Daher wird der kurzperiodische vulkanische Tremor auf Stromboli durch das kontinuierliche Aufsteigen und Platzen kleiner Gasblasen im oberen Teil der Magmasäule verursacht. Das Spektrum des auf Stromboli registrierten langperiodischen Tremors besteht hauptsächlich aus drei Maxima bei 4.8 s, 6 s und 10 s, deren Spektralamplitude mit der jeweiligen Wettersituation variieren. Sie werden daher nicht von einer lokalen vulkanischen Quelle erzeugt, sondern durch Meeresmikroseismik (MMS). Der Durchzug eines lokalen Tiefdruckgebietes scheint die Ursache für Spektralenergie bei 4.8 s and 10 s, die jeweils die Doppelte bzw. die Primäre Frequenz der MMS darstellen. Als Ursache des spektralen Maximums bei 6 s könnte ein Tief nahe der Britischen Inseln in Frage kommen. Seismische Daten, die von dem ersten auf Stromboli installierten Breitband- Array registriert wurden, zeigten überraschend einfache Wellenformen, die einen anfänglich kontraktierenden Quellmechanismus anzeigen. Die Analyse der Partikelbewegung und die Anwendung seismischer Arraytechniken ermöglichten eine Lokalisierung der seismischen Quelle in Oberflächennähe. Die Anwendung verschiedener Inversionsmethoden gestattete es, Eruptionsparameter und Charakteristiken der seismischen Quelle während der Strombolieruption am 5. April 2003 abzuschätzen. Als Ergebnis kann festgehalten werden, dass der paroxystische Ausbruch durch eine langsame Überschiebungsdislokation mit einer Momentenmagnitude von Mw = 3.0 verursacht wurde, ausgelöst durch einen vorher durch Dike-Intrusion verursachten Bruch. Während des Paroxysmus konnte in den seismischen Signalen mindestens eine Blow-out Phase mit einer Momentenmagnitude von Mw = 3.7 identifiziert werden. Diese kann durch einen vertikalen linearen Vektordipol, zwei schwächere horizontale lineare Dipole in entgegengesetzter Richtung, zuzüglich einer Vertikalkraft repräsentiert werden. Seismische Messungen, die während kontrollierter und reproduzierbarer Blowout Experimente unter Verwendung von einem in einer Basaltschmelze eingeschlossenen Gasvolumen durchgeführt wurden, ergaben folgende Ergebnisse: Monochromatische Signale sind Anzeiger für einen Blow-out in einem duktilen Regime, wohingegen ein breitbandigerer Frequenzgehalt auf einen Sprödbruch hinweist. Je grösser die Länge des Schmelztiegels ist, desto schwächer sind die seismischen Signale. Ein grösser Gasdruck bewirkt eine stärkere Fragmentation des Magmas, aber keine höhere Austrittsgeschwindigkeit des Magmapropfens und auch keine grössere seismische Amplitude. Auch wenn die langperiodischen Signale, wie beispielsweise Tilt, im Labor nicht simuliert werden konnten, sind die Blow-out Experimente überraschend gut in der Lage, die am Vulkan Stromboli registrierten kurzperiodischen seismischen Signale zu reproduzieren. / The main purpose of volcano-seismology concerns the qualitative and quantitative description of one or more unknown seismic source(s) located at some unknown depth beneath a volcano. Even if many different volcanoes show similar seismic signal characteristics, up to now it was not possible to find a standard seismic source model for volcanoes, as the double-couple in earthquake seismology. Volcanoes with a continuous activity, like Stromboli (Italy), represent for the volcano seismologist a perfect natural laboratory to address this question. This thesis treats the study of explosion-quakes and volcanic tremor recorded on Stromboli in a broadband frequency range, and discusses the location and the possible mechanisms of the seismic source(s). Seismic and infrasonic recordings of explosion-quake from Stromboli showed that the high-frequency phase propagates with a velocity of approximately 330 m/s. The seismic source can be explained as an explosion at the top of the magma column generated by rising gas bubbles. The seismic P-wave and the air-wave are both generated in the same point at the same time. The different path lengths and velocities for the seismic wave and the air-wave result in a difference in arrival times dt, that could be used to deduce the magma level and sound speed in the eruption column inside the conduit. Stations installed near the active crater reveal that infrasonic and seismic recordings of the short-period tremor (> 1 Hz) share the same spectral content and show similar energy fluctuations. Therefore, the short-period volcanic tremor at Stromboli originates from the continuous out-bursting of small gas bubbles in the upper part of the magmatic column. The spectrum of the long-period tremor recorded at Stromboli consists of three main peaks with periods at 4.8 s, 6 s and 10 s, and amplitudes varying with the regional meteorological situation. Hence, they are not generated by a close volcanic source but rather by ocean microseisms (OMS). The passage of a local cyclone seems to be the seismic source for spectral energy at 4.8 s and 10 s, which represent the Double Frequency and the Primary Frequency of the OMS, respectively. Concerning the 6 s peak, a cyclone near the British Isles could act as a seismic source. Seismic data from the first broadband array deployed on Stromboli showed surprisingly simple waveforms, indicating an initially contracting source mechanism. The analysis of particle motion and the application of seismic array techniques allowed the location of a seismic source in the shallow part of the volcano. Eruption parameters and seismic source characteristics of the April 5, 2003 Stromboli eruption have been estimated using different inversion approaches. The paroxysm was triggered by a shallow slow thrust-faulting dislocation event with a moment magnitude of Mw = 3.0 and possibly associated with a crack that formed previously by dike extrusion. At least one blow-out phase during the paroxysmal explosion could be identified from seismic signals with an equivalent moment magnitude of Mw = 3.7. It can be represented by a vertical linear vector dipole and two weaker horizontal linear dipoles in opposite direction, plus a vertical force. Seismic measurements performed during controlled and reproducible blow-out experiments with a gas volume entrapped in basaltic melt revealed the following: Monochromatic seismic signals suggest a blow-out in a more ductile regime, whereas broader frequency content indicates rupture in a more brittle environment. The longer the crucible, the weaker the seismic signals. An increase in pressure results in a stronger fragmentation, but not in a higher ejection velocity of the plug neither in a higher seismic amplitude. Even if the very long period observations like the tilt signal could not be simulated in the laboratory, the blow-out experiments simulate very well the short-period seismic signals recorded at Stromboli volcano.

Page generated in 0.0457 seconds