• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

無線網狀網路多元速率下的多跳接路徑容納量與延遲之研究與分析 / A Study on Multi-rate Multi-hop Path Capacity and Delay in Wireless Mesh Networks

蔡承璋, Tsai, Cheng-Chang Unknown Date (has links)
近年來興起一個前瞻性無線技術,稱之為無線網狀網路(Wireless Mesh Networks;WMNs) 以所費低廉方式提供無線網路最後一哩存取Internet,同時具備ad hoc網路全部優點。例如自我組織(self-organization)、自我組態(self-configuration)等。而802.11協議已經納入802.11s草案。雖然802.11的實體層支持多元速率,大多數研究為了簡化多假設在單一速率的情況下。但事實上,802.11可以支援的Automatic Rate Fallback (ARF)多元速率演算法;換句話說,由於信號雜訊比和資料錯誤率的不同,資料傳輸速率將自動調整。在這裡,我們假定在WMNs上使用 802.11協定,並且考慮路徑容量,延遲,流量公平及多元速率多跳接的環境。為了設法指出和改善這方面的議題,我們提出了經由改進802.11競爭視窗和加權公平調度機制的跨階層設計。透過一系列的模擬指出問題並找出合適的解決方案。結果顯示,如果增加低速率連結的優先權和考慮流量公平問題,容量及延遲將得到改善。 / A new promising wireless technology has emerged recently, called wireless mesh networks (WMNs). WMNs are an inexpensive way to provide wireless last-mile broadband Internet access and have all the advantages of ad hoc networks, such as self-organization, self-configuration. IEEE 802.11 MAC protocol has been adopted in 802.11s draft. Although IEEE 802.11 physical layer supports multiple rates, most researches assume single rate environment for simplicity. However, in reality, 802.11 adopts automatic rate fallback (ARF) multi-rate algorithm. In other words, the data rate will be automatically adjusted due to its signal-to-noise ratio, or error rate. Here, we assume the fitness of IEEE 802.11 over WMNs, and considering path capacity, delay, flow fairness, in multi-hop multi-rate environments. They all are affected by data rates on the links along the path. In order to address and improve the above issues, we propose a cross layer scheme which is modified by the contention window of IEEE 802.11 DCF MAC and weighted fairness scheduling mechanism. We point out the problem and find out the suitable solution via a series of scenarios simulations. The results show that if increasing the priority of the low data link and taking care about flow fairness problem, the capacity and delay will be improved.

Page generated in 0.0218 seconds