• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 74
  • 15
  • 12
  • 3
  • Tagged with
  • 104
  • 104
  • 47
  • 47
  • 47
  • 42
  • 28
  • 19
  • 18
  • 18
  • 17
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

語義與連結促發作用對中文字彙辨識的影響

高千惠, Kao, Chien-Hui Unknown Date (has links)
文字的意義是怎樣的儲存於我們的記憶?又是透過怎樣的方式來了解文字中的意義呢?本研究藉由語義促發效果的探討,一方面檢視語義與連結促發作用對字彙辨識的影響,另一方面提供中文的辨識歷程及記憶表徵方面的訊息。 本研究在三個相關的實驗中,藉著操弄了各種獨變項來回答上述的問題,第一個獨變項是促發項與目標項的關係;例如,促發項與目標項配對不但會形成(1)雙字詞,且彼此具有相似的意義(如,酣—睡),(2)雙字詞,但彼此具有不同的意義(如,餅—乾),(3)促發項與目標項之間具有相似的意義成分,但不會形成雙字詞(如,扔—丟),以及(4)促發項與目標項之間沒有意義上的關聯。本研究操弄的第二個獨變項是相關配對佔所有刺激的百分比(50%與25%),第三個獨變項則是促發項與目標項之間的聯想強度(高聯想與低聯想)。 綜觀本三個實驗的結果發現(1)當促發項與目標項具有意義上的關聯時,有加速文字辨識的歷程,(2)在高相關配對百分比的情境中,不論高、低聯想強度,意義關聯的刺激配對有顯著的促發效果,(3)在低相關配對百分比的情境中,刺激配對形成雙字詞,但彼此具有不同的意義,則高、低聯想強度都有顯著的促發效果;至於刺激配對形成雙字詞,且彼此具有相似的意義以及刺激配對具有相似的意義成分,但不會形成雙字詞時,則只有高聯想強度有顯著的促發效果,但低聯想強度沒有顯著的促發效果。 這樣的結果顯示在字彙判斷作業中,當促發項與目標項只有意義相似性的成分時,並無法加速受試者對文字的辨識。至於當促發項與目標項形成雙字詞,但彼此具有不同的意義時,並不同於其他的刺激配對,其促發效果可能是藉由組合線索,觸及字彙層次的連結訊息,因而加快文字的辨識速度。
62

以圖文辨識為基礎的旅遊路線規劃輔助工具 / Tour Planning Using Landmark Photo Matching and Intelligent Character Recognition

黃政明, Huang, Cheng Ming Unknown Date (has links)
智慧型手機的用途已從語音溝通延伸轉變為多功能導向的的生活工具。目 前多數的智慧型手機均具備攝影鏡頭,而此模組更已被公認為基本的標準 配備。使用者透過手機,可以輕易且自然地拍攝感興趣的物體、景色或文 字等,並且建立屬於自己的影像資料庫。在眾多的手機軟體中,旅遊類的 程式是其中一種常見整合內容與多項感測模組的應用實例。在行動平台上, 設計一個影像辨識系統服務可以大幅地協助遊客們在旅途中去瞭解、認識 知名的地標、建築物、或別具意義的物體與文字等。 然而在行動平台上的可用資源是有限的,因此想要在行動平台上開發有效 率的影像辨識系統,是頗具挑戰性的任務。如何在準確率與計算成本之間 取得最佳的平衡點往往是行動平台上開發影像辨識技術的最重要課題。 根據上述的目標,本研究擬於行動平台上設計、開發行動影像搜尋與智慧 型文字辨識系統。具體而言,我們將在影像搜尋上整合兩個全域的特徵描 述子,並針對印刷與手寫字體去開發智慧型文字辨識系統。實驗結果顯示, 在行動影像搜尋與文字辨識的效能測試部分,前三名的辨識率皆可達到的 80%。 / The roles of smart phones have extended from simple voice communications to multi-purpose applications. Smart phone equipped with miniaturized image capturing modules are now considered standard. Users can easily take pictures of interested objects, scenes or texts, and build their own image database. Travel-type mobile app is one example that takes advantage of the array of sensors on the device. A mobile image search engine can bring much convenience to tourists when they want to retrieve information regarding specific landmarks, buildings, or other objects. However, devising an effective image recognition system for smart phone is a quite challenging task due to the complexity of image search and pattern recognition algorithms. Image recognition techniques that strike a balance between accuracy and efficiency need to be developed to cope with limited resources on mobile platforms. Toward the above goal, this thesis seeks to design effective mobile visual search and intelligent character recognition systems on mobile platforms. Specifically, we propose two global feature descriptors for efficient image search. We also develop an intelligent character recognition engine that can handle both printed and handwritten texts. Experimental results show that the accuracy reaches 80% for top-3 candidates in visual search and intelligent character recognition tasks.
63

運用文字探勘技術探討國際財務報導準則對企業財務報告揭露之影響 / Disclosure quality and IFRS adoption:a text mining approach

廖培君, Liao, Pei Chun Unknown Date (has links)
本研究探討國際財務報導準則採用後對英國上市公司財務報告揭露品質之影響,選取高科技產業公司於國際財務報導準則轉換年度、轉換年度前後兩年之年報,並根據IAS 38, Edvinsson and Malone (1997), Lev (2001), and Sveiby (1997)編纂智慧資本字典,與先前研究之差異處在於本研究採用文字探勘技術之分類演算法以探討智慧資本揭露品質是否和國際財務報導準則之採用有關,結果顯示智慧資本揭露品質和國際財務報導準則之採用有關,接著本研究運用迴歸分析,進一步了解那些智慧資本項目之揭露於採用前後有顯著差異,結果顯示在國際財務報導準則採用後,高科技公司增加智慧資本項目之揭露,符合本研究之預期,有顯著差異之智慧資本項目如:電腦軟體、顧客名單、顧客忠誠度、顧客關係和專利,研究結果也指出在國際財務報導準則採用後,高科技公司增加智慧資本項目之揭露之現象較常發生在上市時間較早之公司、總資產較大之公司。 / This study investigates the impact of the quality of disclosures of financial reports of the listed companies in the U.K. with International Financial Reporting Standards (IFRS) adoption. I select the annual reports of companies in the high-tech industry sectors in the IFRS transition year and two years before and after the transition year. The dictionary for intellectual capital according to four sources, IAS 38, Edvinsson and Malone (1997), Lev (2001), and Sveiby (1997) is compiled. In contrast to prior studies, I use classification algorithm of text mining techniques to explore whether the quality of intellectual capital disclosures is related with the adoption of IFRS. Results show that the disclosures of intellectual capital items are related with the adoption of IFRS. To further realize which intellectual capital item disclosures are significantly different between pre-adoption and post-adoption, the regression analysis is applied. Evidence is promising, in the post-IFRS period, high-tech firms may increase the intellectual capital item disclosures, such as computer software, customer list, customer loyalty, customer relationships and patents. Evidence also indicates that, the evidence that high-tech firms may increase the intellectual capital item disclosures in the post-IFRS period is more pronounced in older and larger companies.
64

應用文字探勘分析網路團購商品群集之研究 -以美食類商品為例 / The study of analyzing group-buying goods clusters by using text mining – exemplified by the group-buying foods

趙婉婷 Unknown Date (has links)
網路團購消費模式掀起一陣風潮,隨著網路團購市場接受度提高,現今以團購方式進行購物的消費模式不斷增加,團購商品品項也日益繁多。為了使網路團購消費者更容易找到感興趣的團購商品,本研究將針對團購商品進行群集分析。 本研究以國內知名團購網站「愛合購」為例,以甜點蛋糕分類下的熱門美食團購商品為主,依商品名稱找尋該商品的顧客團購網誌文章納入資料庫中。本研究從熱門度前1000項的產品中找到268項產品擁有顧客團購網誌586篇,透過文字探勘技術從中擷取產品特徵相關資訊,並以「k最近鄰居法」為基礎建置kNN分群器,以進行群集分析。本研究依不同的k值以及分群門檻值進行分群,並對大群集進行階段式分群,單項群集進行質心合併,以尋求較佳之分群結果。 研究結果顯示,268項團購商品經過kNN分群器進行四個階段的群集分析後可獲得28個群集,群內相似度從未分群時的0.029834提升至0.177428。在經過第一階段的分群後,可將商品分為3個主要大群集,即「麵包類」、「蛋糕類」以及「其他口感類」。在進行完四個階段的分群後,「麵包類」可分為2種類型的群集,即『麵包類產品』以及『擁有麵包特質的產品』,而「蛋糕類」則是可依口味區分為不同的蛋糕群集。產品重要特徵詞彙不像一般文章的關鍵字詞會重複出現於文章中,因此在特徵詞彙過濾時應避免刪減過多的產品特徵詞彙。群集特性可由詞彙權重前20%之詞彙依人工過濾及商品出現頻率挑選出產品特徵代表詞來做描繪。研究所獲得之分群結果除了提供團購消費者選擇產品時參考外,也可幫助團購網站業者規劃更適切的行銷活動。本研究亦提出一些未來研究方向。 / Group-buying is prevailing, the items of merchandise diverse recently. In order to let consumer find the commodities they are interested in, the research focus on the cluster analysis about group-buying products and clusters products by the features of them. We catch the blogs of products posted by customers, via text mining to retrieve the features of products, and then establish the kNN clustering device to cluster them. This research sets different threshold values to test, and multiply clusters big groups, and merges small groups by centroid, we expect to obtain the best quality cluster. From the results, 268 items of group-buying foods can be divided into 28 clusters, and the mean of Intra-Similarity also can be improved. The 28 clusters can be categorized to three main clusters:Bread, Cake, and Other mouthfeel foods. We can define and name each cluster by catch the top twenty percent of the keywords in each cluster. The results of this paper could help buyers find similar commodities which they like, and also help sellers make the great marketing activity plan.
65

法人說明會資訊對供應鏈上下游公司分析師預測之影響-以我國半導體產業為例 / The effect from up-stream company's conference call information on down-stream company's analysts' forecast-an example from semi-conductor industry in Taiwan

涂智翔 Unknown Date (has links)
法人說明會是公司傳遞內部訊息給外部使用者方法之一,透過法人說明會宣佈財務及非財務資訊,藉以消弭因資訊不對稱所產生之代理問題,亦為分析師作出盈餘預測參考依據之一。在半導體供應鏈中,其上、下游產業間關聯緊密,資訊具有垂直移轉效果,因此,本研究欲探討半導體供應鏈中,下游公司分析師參考上游關聯公司法人說明會資訊並作出盈餘預測調整之程度。 本研究針對國內2005年至2011年半導體上市、櫃公司,進行法人說明會資訊與分析師盈餘預測修正之關聯性。實證結果發現,下游公司財務分析師會參考上游關聯公司召開法人說明會所宣佈之預測財務及非財務資料,並修正對公司之盈餘預測;且供應鏈中,上、下游關係越遠及國籍為外國之分析師,對上游關聯公司法人說明會資訊依賴程度越高,作出的盈餘預測調整幅度越大。
66

文字探勘在學生評鑑教師教學之應用研究 / A Study of Students’ Evaluation on Teacher’s Teaching with Text Mining

彭英錡, Peng, Ying Chi Unknown Date (has links)
本研究旨在瞭解探討北部某C大學實施學生評鑑教師教學之現況,並探討大學生回答開放性問題對該課程的優點與建議,進行文字探勘分析。 本研究利用問卷調查,在期末課程結束前,利用上網方式,對該課程進行填答。問卷所得資料進行敘述統計、因素分析、信度分析、獨立樣本t檢定、單因子變異數分析、皮爾森相關、多元迴歸與R軟體進行詞彙權重、文字雲、主題模型和群集分析。本研究結論如下: 一、學生評鑑教師教學現況以教學態度感受程度最高。 二、問卷各題項以「教師教學態度認真負責,且授足所需授課之時數」平均分數最高。 三、回饋性建議肯定「教學目標明確」最高,最需改善「彈性調整教學內容」。 四、學生評鑑教師教學因學生年級和課程類別不同而有顯著差異。 五、學生評鑑教師教學成效與學習成績呈低相關,以「教學評量」有預測力。 六、重要詞彙與文字雲發現「教學」、「內容」、「喜歡」及「同學」共同詞彙。 七、各學院主題模型命名,主要有觀察,考試與教學內容。 八、各學院集群分析結果,學生重視教學內容、學習過程與收穫及考試。 根據上述結果提出建議,以供教育行政主管機關、教師及未來研究者之參考。 / The purpose of this study was to explore the current situation of t in the C university of North, and finding the strength and suggestion of the class to opening question used text mining. Before the class will be over , a questionnaire survey, using the internet, was used to gather personal information and the measurement applied in this research. The questionnaire is analyized by descriptive statistics analysis, independent t test, one-way ANOVA, Pearson correlation analysis, multiple regression, vocabulary weight, word cloud, topic model, and cluster analysis in R software. Conclusions obtained in this study are as in the followings: 1. The situation of student ratings of instruction scored over average on the effectiveness of teaching, with “teaching atttitude” the highest. 2.. The highest average scores of the items in the questionnaire were "serious and responsible teachers' teaching attitude and the number of hours required for teaching grants." 3. The feedback of suggestions is “The current of teaching objectives” and need to improve the “filxible adjustment of teaching content”. 4. The student ratings of instruction were vary significant in terms of student grade and course type. 5. Student ratings of instruction effectiveness and academic performance is low correlation, with "Teaching evaluation" predictive. 6. The findings on the important phrases and word clouds were “Teaching”, “Content”, “Likes”, and “Classmates”. 7. The naming of the theme model in each college is “Observation”, “Examination”, and “Teaching content”. 8. The results of cluster analysis each college were focused on “Teaching content”, “Learning process and gain”, and “Examination”. Based on the findings above, suggestions and recommendation were provided as a reference for educational administrators, and teachers, and as a guide for future research.
67

財報文字分析之句子風險程度偵測研究 / Risk-related Sentence Detection in Financial Reports

柳育彣, Liu, Yu-Wen Unknown Date (has links)
本論文的目標是利用文本情緒分析技巧,針對美國上市公司的財務報表進行以句子為單位的風險評估。過去的財報文本分析研究裡,大多關注於詞彙層面的風險偵測。然而財務文本中大多數的財務詞彙與前後文具有高度的語意相關性,僅靠閱讀單一詞彙可能無法完全理解其隱含的財務訊息。本文將研究層次由詞彙拉升至句子,根據基於嵌入概念的~fastText~與~Siamese CBOW~兩種句子向量表示法學習模型,利用基於嵌入概念模型中,使用目標詞與前後詞彙關聯性表示目標詞語意的特性,萃取出財報句子裡更深層的財務意涵,並學習出更適合用於財務文本分析的句向量表示法。實驗驗證部分,我們利用~10-K~財報資料與本文提出的財務標記資料集進行財務風險分類器學習,並以傳統詞袋模型(Bag-of-Word)作為基準,利用精確度(Accuracy)與準確度(Precision)等評估標準進行比較。結果證實基於嵌入概念模型的表示法在財務風險評估上比傳統詞袋模型有著更準確的預測表現。由於近年大數據時代的來臨,網路中的資訊量大幅成長,依賴少量人力在短期間內分析海量的財務資訊變得更加困難。因此如何協助專業人員進行有效率的財務判斷與決策,已成為一項重要的議題。為此,本文同時提出一個以句子為分析單位的財報風險語句偵測系統~RiskFinder~,依照~fastText~與~Siamese CBOW~兩種模型,經由~10-K~財務報表與人工標記資料集學習出適當的風險語句分類器後,對~1996~至~2013~年的美國上市公司財務報表進行財報句子的自動風險預測,讓財務專業人士能透過系統的協助,有效率地由大量財務文本中獲得有意義的財務資訊。此外,系統會依照公司的財報發布日期動態呈現股票交易資訊與後設資料,以利使用者依股價的時間走勢比較財務文字型與數值型資料的關係。 / The main purpose of this paper is to evaluate the risk of financial report of listed companies in sentence-level. Most of past sentiment analysis studies focused on word-level risk detection. However, most financial keywords are highly context-sensitive, which may likely yield biased results. Therefore, to advance the understanding of financial textual information, this thesis broadens the analysis from word-level to sentence level. We use two sentence-level models, fastText and Siamese-CBOW, to learn sentence embedding and attempt to facilitate the financial risk detection. In our experiment, we use the 10-K corpus and a financial sentiment dataset which were labeled by financial professionals to train our financial risk classifier. Moreover, we adopt the Bag-of-Word model as a baseline and use accuracy, precision, recall and F1-score to evaluate the performance of financial risk prediction. The experimental results show that the embedding models could lead better performance than the Bag-of-word model. In addition, this paper proposes a web-based financial risk detection system which is constructed based on fastText and Siamese CBOW model called RiskFinder. There are total 40,708 financial reports inside the system and each risk-related sentence is highlighted based on different sentence embedding models. Besides, our system also provides metadata and a visualization of financial time-series data for the corresponding company according to release day of financial report. This system considerably facilitates case studies in the field of finance and can be of great help in capturing valuable insight within large amounts of textual information.
68

文字言語の創造性に関する認知言語学的研究―認知文字論の構築にむけて―

黒田, 一平 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22516号 / 人博第919号 / 新制||人||220(附属図書館) / 2019||人博||919(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 谷口 一美, 准教授 守田 貴弘, 准教授 金丸 敏幸, 教授 山梨 正明 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
69

消費者輿情對跨境網購產品銷售量之影響:以淘寶網為例 / The Effects of Consumer Comments and Sentiments on Product Sales of Cross-border Shopping Websites: The Taobao Case

呂奕勳 Unknown Date (has links)
近年來傳統線上購物正面臨著一連串的市場困境,如削價競爭、廉價品競爭等,因此導致銷售量之成長趨緩,反觀跨境線上購物卻出現了蓬勃發展的態勢,因而讓跨境線上購物成為驅動經濟活動與國際貿易的新引擎。另一方面,由於跨境線上購物的情境複雜性遠高於傳統的境內線上購物,業者們欲開發一海外新市場,必須先了解該地消費者行為與其購買決策過程後,才能制定出好的商業策略,並且進一步將產品導向的服務轉化成為以顧客導向的服務,才有機會為傳統線上購物之困境另闢生機。因此,引取並了解消費者所體認的內在價值是經營跨境線上購物最重要的成功因素。 本研究將試圖將傳統境內線上購物研究擴展到跨境線上購物議題,藉由文字探勘(Text Mining)分析、語意情感分析與 k-means 分群演算法,挖掘出消費者對於所購買商品之評論的常見內容型態與所購買商品之類別,並試圖找出跨境網購平台上各項因素及商品評論對於產品銷售量間之關連性,提供未來研究者及跨境網購平台業者決策之依據。 / While online shopping websites are facing the difficulties of price and low-quality competition, cross-border online shopping is on a vigorous development trend, showing that cross-border online shopping is an important trend of online shopping field. Due to the complexity of cross-border online shopping is much higher than the traditional domestic online shopping, so understanding the value of cross-border online shopping consumers is the most important success factors. Companies want to develop new markets abroad, must understand the local consumer’s behaviour and their decision-making process in order to make good business strategies. This study uses text mining analytic technology, semantic analysis techniques, and k-means clustering algorithm to identify characteristics of consumers’ reviews and the common categories of goods they purchased. After getting the reason why consumers use cross-border online shopping service and what values they got in this service. Researcher can predict and analyse the evolution and development of cross-border online shopping, provide reference for future online shopping academic studies and online shopping industry’s decision-making.
70

運用資料探勘分析社會輿情與廣告影響房地產行情短期波動行為之研究 / A Study of Applying Data Mining to Find the Influence of Public Opinion and Advertisement on the Sales of Real Estate in the Short Run

張修維, Chang, Hsiu Wei Unknown Date (has links)
網際網路時代資訊接收的便利性,使得大眾容易接收到媒體所發布的媒體資訊,而這些資料具含的意見詞彙間接反應出群眾對特定主題的情緒傾向。在針對房地產的媒體當中,當特定區域的房地產市場具有良好的發展空間而成為交易熱區時,這些針對特定區域且帶含情緒的房市篇章報導或其他影響房市之相關新聞以及廣告往往會影響我們的購屋決策。 本研究將以桃園市及台中市-兩個近五年來台灣房市較為熱門的區域作為研究區域進行分析及研究,期望找出在短期時間新聞輿情及廣告和房市交易價量的相關性以及會影響該房地產市場之因素。首先蒐集桃園市及台中市的實價登錄的房地產交易資料以及廣告後,運用文字探勘分析房市整體輿情與兩都市房地產價量之關聯性,再將新聞分群後找出特徵詞,個別建立時間序列來了解各種情緒及房地產價量的共同移動性,並結合廣告投入量找出房地產市場價量以及影響因素的領先關係。並透過自建的類神經網路模型建立針對桃園市和台中市的交易量預測模型以及針對特定房市熱門區域-青埔和七期的交易量預測模型,並透過計算輸入變數的權重總和來判別新聞情緒對於房地產成交價量的影響程度。 研究首先提供了對於新聞情緒的分類包含區域經濟情緒、區域社會情緒、區域環境情緒、區域政治情緒、稅制情緒、選舉情緒。接著進行時間序列分析指出總情緒序列與成交量的時間序列相關係數都有高於70%以上,桃園市成交量與桃園市情緒的相關係數為0.73,台中市成交量與台中市情緒的相關係數為0.81,皆呈現高度正相關,顯示桃園及台中的房市交易量與情緒現存在高度相關性。在特定新聞類別當中,透過兩個城市的相關係數比對顯示稅制新聞情緒,區域環境相關情緒,區域社會相關情緒,以上三個情緒跟房市的交易量共同移動較為明顯,相關係數皆在0.5左右甚至以上,可見這些類別的新聞能夠適時反映大眾對於特定區域的房地產的看好及看壞。在此階段也透過領先指標驗證了情緒以及廣告是會領先房市交易量,桃園以及台中兩個區域都有情緒領先交易量一個月的現象。針對特定區域的交易量研究包含青埔特區及七期重劃區,也發現到兩地的交易量高峰前一至兩個月都有一波廣告的高峰。 而在類神經網路模型方面的研究結果能夠良好地預測漲跌趨勢,利用桃園資料進行訓練並以台中資料做為測試的模型在19次的漲跌中預測出17次,而將百分之七十的桃園及台中混合資料進行訓練並其餘百分之三十做為測試的模型結果也成功在14次漲跌中預測出10次,顯示模型效果預測能力良好,並透過將輸入權重加總的方式來衡量各輸入變數的影響程度,研究結果指出總情緒,稅制情緒量,區域環境情緒量與兩地房地產市場交易量最有關聯且影響最重。最後利用時間序列得知廣告高峰會領先總交易高峰一至兩個月的特性,利用從2012年10月至2016年2月的青埔特區資料及2012年10月至2013年12月的七期重劃區資料混合進行訓練並以2014年1月至2016年2月七期重劃區資料做為測試資料的模型能夠有效在兩年內預測中三次交易高峰,顯示該模型能透過預測出下一期的廣告投入量做為中介變數進而推估出交易量高峰的時間透過此模型可在未來應用於相關政策投入市場後對市場交易量的影響,也能夠快速有效的得到預測結果,而在針對特定市場我們也可以透過預測廣告以及運用廣告為交易量的領先特性來了解在近期何時會有交易量高峰,如能配合了解市場輿情脈絡,可為房屋仲介以及建商在更精確的時間點投放廣告時機點達到廣告的最大效益。

Page generated in 0.0239 seconds