• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

應用在空間認知發展的學習歷程分析之高效率空間探勘演算法 / Efficient Mining of Spatial Co-orientation Patterns for Analyzing Portfolios of Spatial Cognitive Development

魏綾音, WEI, LING-YIN Unknown Date (has links)
空間認知(Spatial Cognition)指出人所理解的空間複雜度,也就是人與環境互動的過程中,經由記憶與感官經驗,透過內化與重建產生物體在空間的關係認知。認知圖(Cognitive Map)是最常被使用在評估空間認知。分析學生所畫的認知圖有助於老師們瞭解學生的空間認知能力,進而擬定適當的地理教學設計。我們視空間認知發展的學習歷程檔案是由這些認知圖所構成。隨著數位學習科技的進步,我們可以透過探勘認知圖的方式,探討空間認知發展的學習歷程檔案。因此,我們藉由透過圖像的空間資料探勘,分析學生空間認知發展的學習歷程。 空間資料探勘(Spatial Data Mining)主要是從空間資料庫或圖像資料庫中找出有趣且有意義的樣式。在論文中,我們介紹一種空間樣式(Spatial Co-orientation Pattern)探勘以提供空間認知發展學習歷程的分析。Spatial Co-orientation Pattern是指圖像資料庫中,具有共同相對方向關係的物體(Object)常一起出現。例如,我們可以從圖像資料庫中發現物體P常出現在物體Q的左邊,我們利用二維字串(2D String)來表示物體分佈在圖像中的空間方向關係。我們透過Pattern-growth的方法探勘此種空間樣式,藉由實驗結果呈現Pattern-growth的方法與過去Apriori-based的方法[14]之優缺點。 我們延伸Spatial Co-orientation Pattern的概念至時空資料庫(Spatio-temporal Database),提出從時空資料庫中,探勘Temporal Co-orientation Pattern。Temporal Co-orientation Pattern是指Spatial Co-orientation Pattern隨著時間的變化。論文中,我們提出兩種此類樣式,即是Coarse Temporal Co-orientation Pattern與Fine Temporal Co-orientation Pattern。針對此兩種樣式,我們提出三階段(three-stage)演算法,透過實驗分析演算法的效率。 / Spatial cognition means how human interpret spatial complexity. Cognitive maps are mostly used to test the spatial cognition. Analyzing cognitive maps drawn by students is helpful for teachers to understand students’ spatial cognitive ability and to draft geography teaching plans. Cognitive maps constitute the portfolios of spatial cognitive development. With the advance of e-learning technology, we can analyze portfolios of spatial cognitive development by spatial data mining of cognitive images. Therefore, we can analyze portfolios of spatial cognitive development by spatial data mining of images. Spatial data mining is an important task to discover interesting and meaningful patterns from spatial or image databases. In this thesis, we investigate the spatial co-orientation patterns for analyzing portfolios of spatial cognitive development. Spatial co-orientation patterns refer to objects that frequently occur with the same spatial orientation, e.g. left, right, below, etc., among images. For example, an object P is frequently left to an object Q among images. We utilize the data structure, 2D string, to represent the spatial orientation of objects. We propose the pattern-growth approach for mining co-orientation patterns. An experimental evaluation with synthetic datasets shows the advantages and disadvantages between pattern-growth approach and Apriori-based approach proposed by Huang [14]. Moreover, we extend the concept of spatial co-orientation pattern to that of temporal patterns. Temporal co-orientation patterns refer to the change of spatial co-orientation patterns over time. Two temporal patterns, the coarse temporal co-orientation patterns and fine temporal co-orientation patterns are introduced to be extracted from spatio-temporal databases. We propose the three-stage algorithms, CTPMiner and FTPMiner, for mining coarse and fine temporal co-orientation patterns, respectively. An experimental evaluation with synthetic datasets shows the performance of these algorithms.

Page generated in 0.0191 seconds